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Abstract— EEG feature extraction is a difficult and important 

problem in EEG analysis which is significantly helpful in 

cerebral disease aided diagnosis, such as epilepsy. In this paper, 

a novel EEG feature extraction method is proposed, which 

obtains the phase series via Hilbert-Huang transform, and then 

the phase interaction information is extracted among all EEG 

channels by using neural networks. In the phase calculation, 

rather than the commonly used Hilbert transform and complex 

wavelet transform, the Hilbert-Huang transform is introduced, 

which is more suitable for nonlinear and nonstationary signal 

processing, decomposing and adaptive transforming. In the 

phase interaction information extraction, instead of a single 

synchronization index, an extreme learning machine is adopted, 

which can identify the phase interaction information via one-step 

prediction and taking the output weights as the features. 

Furthermore, the novel method is applied to epileptic seizure 

prediction. Simulations on Freiburg database show that the 

proposed method can extract the potential EEG characteristics 

well compared to other feature extraction methods, which are 

propitious to predict seizures more effectively. 

I. INTRODUCTION 

Epilepsy is a kind of chronic brain dysfunction syndrome. 

About 25% of epilepsy patients cannot be treated sufficiently 

by any available therapy. They are at the risk of serious 

injuries, and an effective seizure prediction method is needed 

for them to provide warning time for safety-enhancing 

behavioral responses. Electroencephalograph (EEG) can 

reflect the physiological functions of the human brain and 

mental state. It is very helpful in monitoring of epilepsy.  

EEG has been proven to be a kind of nonlinear and 

nonstationary time series [1]-[2]. Most of the researchers 

always focus their emphasis on the research of EEG feature 

extraction methods, which includes linear methods and 

nonlinear methods, or univariate measures and multivariate 

measures [3]. Linear methods mainly include spectral analysis 

[4], linear model analysis [5], and wavelet-based method [6]. 

Nonlinear methods mainly include correlation dimension [7], 

entropy-based approaches [8], and largest Lyapunov exponent 

[9]. All the above methods are mainly univariate measures. 

Multivariate measures include linear correlation analysis [10], 

and phase synchronization [11]-[13]. Reference [14] 
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overviewed the most commonly used multivariate nonlinear 

features, and [15] presented the synchronization measures for 

analyzing EEG. A. Aarabi [3] pointed out that there is no clear 

superiority of the nonlinear measures over linear measures, 

whereas bivariate measures are generally more effective. In 

multivariate measures, synchronous analysis methods are the 

most widely studied. 

The main idea of synchronous analysis methods is to 

analyze the phase synchronization between different channels, 

mainly concerning the phase obtaining and synchronization 

quantification [14]. In the aspect of phase calculation, Hilbert 

transform (HT) [11] and complex wavelet transform (CWT) 

[12] are most widely used; and in the aspect of phase 

synchronization, most researchers focused on the mean phase 

coherence (MPC) [11]-[14]. HT is simple, but it computes the 

instantaneous amplitude, frequency and phase of the signal 

within the mathematics framework in macro perspective. It is 

likely for negative frequency to occur, which does not make 

any sense. Meanwhile, when CWT is used, a proper wavelet 

needs to be selected, and also the transform result is not 

unique [16]. Therefore, in order to handle the problem of 

nonlinear and nonstationary signal analysis better, N.E. Huang 

proposed Hilbert-Huang transform (HHT) [17] in 1998, 

which can overcome the above-mentioned shortcomings of 

HT and CWT. HHT takes the smoothing processing at first, 

which can decompose original signal into several stationary 

ones without a special decomposition base, and the transform 

result is unique. 

In addition to the transform methods for phase calculation, 

how to quantify the phase interaction among different 

channels is still a problem. Although MPC has a high 

computational efficiency, it quantifies the phase 

synchronization only between double channels from a single 

point of view, and unable to fully exploit the phase interaction 

relationships among all channels. Fortunately, neural 

networks can exploit the phase interaction information from 

the system identification point of view, analyzing the phase 

more comprehensively. Moreover, neural networks are 

nonparametric models, which are insensitive to the data 

distributions and characteristics, and appropriate for all kinds 

of patients [14]. Therefore, the neural networks are employed 

to build up the model in the feature extraction segment. In 

order to lower the computational cost and make it possible to 

use in online devices, extreme learning machine (ELM) [18] is 

chosen. 

All the above considerations motivate the proposed 
method, which is a novel feature extraction method based on 
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HHT and ELM. HHT is used to calculate the phase of EEG, 
and ELM is adopted to quantify the interaction information 
among multichannels rather than double channels.  

II. MULTICHANNEL EEG FEATURE EXTRACTION BASED ON 

HHT AND ELM 

In the phase analysis methods, there are two key points to 

focus on: phase calculation and phase interaction information 

extraction. According to the analysis in the Introduction part, 

a novel multichannel EEG feature extraction method based on 

HHT and ELM is proposed in this paper, which is named 

HHT-ELM for short. In general, HHT takes place of the 

commonly used HT and CWT, and ELM takes place of the 

phase synchronization indices (such as MPC) at the same 

time.  

Fig. 1 shows the main structure of HHT-ELM. In Fig.1, the 

input of the whole structure is EEG with d channels, and they 

are transformed into phase series by HHT. Then, ELM is used 

to process the phase series. Through nonlinear mapping and 

one-step prediction training, the output weights B of ELM are 

obtained, which are taken as the EEG features we need. 

A. HHT for Phase Calculation 

HHT decomposes and transforms adaptively according to 

the data itself [17]. It consists of empirical mode 

decomposition (EMD) and HT [19]-[20]. The nature of EMD 

is time series smoothing processing, i.e., the different scales of 

fluctuations or trends of the upcoming complex signals are 

decomposed gradually [19]. Each scale is called as intrinsic 

mode function (IMF). For different signals, EMD has the 

adaptive decomposition ability and the decomposition result 

is unique. 

Based on EMD, HHT can be explained as follows. For the 

given signal x(t), EMD can decompose x(t) into a group of 

IMFs, imfi (i=1,2,…, n), 

1
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x t imf t r t
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  ,                           (1) 

where n denotes the number of IMFs, r(t) is called the residual 

function, representing the trend of signal x(t). Then, applying 

HT to the IMF components, the following is obtained 
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where, 
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( ) d ( ) / dw t t t  . 

Through (2), the instantaneous amplitude a(t), phase φ(t), and 

angle frequency w(t) of IMF can be obtained. φ(t) calculated 

by (3) is the phase series we need. 
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Figure 1.  The structure of the multichannel EEG feature extraction based 

on HHT and ELM. 

B. ELM for Phase Interaction Quantization 

After calculating the phase, the phase interaction 
information needs to be extracted. ELM is utilized for 
imitating and identifying the phase interaction information 
among all channels with a low computation cost [18], instead 
of the commonly used phase synchronization indices [14].  

Taking the phase interaction among different channels as a 
complicated system, then the quantization of that could be 
turned into a system identification problem. ELM is taken as 
the identifier, and the output weights are the system 
parameters to be identified. The inputs of the system are the 
current phases, and the outputs are the phases of the next time. 
Therefore, by means of one-step prediction of the phases, the 
phase interaction system can be identified, i.e., the phase 
interaction information among all channels can be quantified.  

As shown in Fig.1, the input layer of ELM is phase
i , and 

the output layer of ELM is phase
1i  . Because the research of 

this paper is based on a moving-window analysis, therefore 
the feature extraction method acts on each time window. In 
each time window, the one-step prediction training procedure 
of ELM is used to fit the actual phase series. Then, the output 
weights B of ELM are obtained, which are taken as the phase 
interaction system parameters to be identified, i.e., the useful 
extracted EEG features of the corresponding time window. 
The features present all the information of the phase 
interaction among all channels. 

ELM works for single-hidden layer feedforward networks 

[18], and it has been demonstrated to have impressive 

performance in regression and classification tasks due to high 

generalization ability and fast learning speed. Different from 

other general neural networks, ELM calculates the output 

weights using Moore-Penrose inverse rather than iterate, and 

generates the input weights and biases randomly rather than 

design them. Therefore, ELM can perform at extremely fast 

learning speed. In this paper, ELM is not only used in the 

feature extraction part, but also used as a classifier later. 

III. APPLICATION IN EPILEPTIC SEIZURE PREDICTION 

Epileptic seizures are usually characterized by an 
abnormal synchronized electric discharge of neurons involved 
in the epileptic process, implying that a method based on 
phase analysis should be adopted. Therefore, the proposed 
method HHT-ELM will be applied to the epileptic seizure 
prediction in this paper, and the interpretations are as follows. 
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Step 1: Preprocessing. In order to eliminate the influence 

of superimposed sinusoidal disturbance at the frequency of the 

ac power supply, a 50 Hz band-suppression filter is exploited.  

Step 2: Feature extraction. The preprocessed EEG signals 

are passed through the novel feature extraction method 

HHT-ELM over time windows, producing a feature vector to 

be used for classification.  

Step 3: Classification. ELM is also used to learn the 

mappings from the training set features into the patient’s state: 

preictal or interictal.  

Step 4: Alarm producing. From the classification results, 

not only the trend of patient’s brain condition can be found, 

but also a chattering behavior can often be found. In order to 

avoid the chattering behavior which negatively affects the 

seizure prediction capability, “preictal density” Den in an 

observation window winos is calculated 

preictal preictal interictal/ ( )Den N N N  ,                (4) 

where Npreictal denotes the predicted preictal samples’ number 
and Ninterictal denotes the predicted interictal sample’s number, 
and a density threshold γ should be chosen. When Den is over 
γ, an alarm is produced, otherwise no alarm. 

IV. EXPERIMENTS AND RESULTS 

To evaluate the proposed method, some simulations on the 

Freiburg EEG database (http://epilepsy.uni-freiburg.de) are 

carried out, which contains invasive EEG recordings of 21 

patients suffering from medically intractable focal epilepsy. 

Because the EEG recordings come from cortex, so there is 

little volume conduction effect and we would not discuss 

whether the method will be affected by that or not. 

A. Simulations 

All the simulations were based on a 1.80 GHz 2-core CPU 

with 2.00 GB memory. The training and testing data sets have 

been generated for each patient separately. For the preictal 

data set, the first two seizures (or the first seizure for patient 8 

and 13 with only two seizures totally) were used to produce 

the training set, and the remaining seizures were to test. By 

using the intervals of 10 s and overlapped by 50%, 37.6 

minutes of data immediately preceding each seizure can 

produce 450 preictal training samples. For the interictal data 

set, the interictal training samples are also generated using the 

intervals of 10 s, randomly chosen from the interictal 

recordings of 24 h for a total of 900 interictal training samples; 

and the remaining record were to test. 

The implementation of the proposed method also requires 

the choice of some design parameters. After some 

experimentation, we set the parameters as follows. The time 

window is set at 10 s, and overlapped by 50%. For HHT-ELM, 

the maximum number of IMFs is set at 3. Then according to 

the marginal spectrum of Hilbert-Huang spectrum we can see 

that, imf1, imf2, imf3, and residual r mainly contain the 

component of 17~30Hz, 8~20Hz, 5~10Hz and 0~5Hz, 

respectively. They are nearly corresponding to EEG rhythms 

of β, α, θ and δ waves. The number of hidden neurons of ELM 

is empirically determined as 10, and the sigmoid function is 

chosen as the activation function. For ELM [21] for 

classification, the number of hidden neurons is set at 1000, 

and the activation function uses sigmoid functions. The 

observation window winos is 1.5 min, and the density threshold 

γ is 0.7. In order to weaken the influence of the randomness 

caused by ELM, all the trials are repeated for 30 times, and the 

mean value of the thirty results is taken as the final result. For 

the comparison method, the parameters are as follows. We 

choose Gaussian complex wave as the base wave, i.e., 

Gaussian complex wave transform (GCWT), and the order of 

it is 4. The order of AR coefficient is 6, with the moving 

average parameters being 20, and estimated by Burg method. 

B. Performance Evaluations 

In order to illustrate the results clearly, the following 

evaluations are used: the sensitivity se (the percentage of 

seizures which have been predicted accurately), the 

false-positive rate fpr (the number of false alarms per hour in 

interictal EEG), the advance prediction time ta (the difference 

between the seizure beginning time marked in the database 

and the alarm time determined by the prediction system), and 

the performance index P (shown in (5) [11]).  

 
2 2

/ 2e pP s s  ,                           (5) 

where es  denotes the mean sensitivity, and ps  denotes the 

specificity rate, which is defined as 1 minus the mean fpr. The 

larger P- the better the system. 

C. Results 

Table I and Table II show the comparison of different 

phase interaction quantization methods and the comparison of 

different transform methods, respectively. It can be seen from 

the two tables that, the mean ta of them are all nearly 50 

minutes. From Table I, compared with MPC, no matter 

transformed by HT or GCWT, not only se of ELM is higher, 

but also the mean fpr has an obvious advantage, i.e., P is much 

higher. From Table II, compared to HT and GCWT, not only se 

of HHT is higher, but also the mean fpr has an obvious 

advantage, i.e., P is much higher. In general, the results 

indicate that ELM is more effective than MPC for the 

quantization of the phase interaction, and HHT is more 

suitable for nonlinear and nonstrationary signal analysis. 

In order to illustrate that the proposed seizure prediction 

system is more effective, the proposed method (marked as 

“HHT-ELM-ELM”) is compared with two other popular 

methods: the classical phase synchronization method [11] 

(marked as “Method 1”) and the method based on AR model 

[5] (marked as “Method 2”). Method 1 uses an automated 

technique for detecting decreased synchronization, finding of 

a preictal drop in synchronization, and distinguishes the 

preictal state from the interictal interval. Method 2 uses AR 

coefficients as EEG features, and takes ELM as the classifier. 

The results are compared in Table III. 
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TABLE I.  RESULTS COMPARISON OF PHASE INTERACTION 

QUANTIZATION METHODS MPC AND ELM 

Feature extraction 

method 

HT- 

MPC 

HT- 

ELM 

GCWT 

-MPC 

GCWT 

-ELM 

Mean se (%) 70.7 77.2 72.8 73.9 

Highest se (%) 87.0 89.1 84.8 84.8 

Mean ta (min) 49.7 48.0 56.0 53.6 

Mean fpr (h-1) 0.27 0.24 0.22 0.14 

P 0.72 0.77 0.76 0.80 

TABLE II.  RESULTS COMPARISON OF TRANSFORM METHODS HT, 
GCWT AND HHT 

Feature extraction 

method 

HT- 

ELM 

GCWT 

-ELM 

HHT 

-ELM 

Mean se (%) 77.2 73.9 84.8 

Highest se (%) 89.1 84.8 95.7 

Mean ta (min) 48.0 53.6 52.3 

Mean fpr (h-1) 0.24 0.14 0.08 

P 0.77 0.80 0.89 

TABLE III.  RESULTS COMPARISON OF DIFFERENT METHODS 

Items Method 1 Method 2 
HHT-ELM 

-ELM 

Mean se (%) 71.7 81.5 84.8 

Highest se (%) 71.7 87.0 95.7 

Mean ta (min) 40.2 61.8 52.3 

Mean fpr (h-1) 0.35 0.11 0.08 

P 0.68 0.85 0.89 

 

In Table III, the mean ta of the three methods are all over 

40 minutes. The mean sensitivity of our method HHT-ELM 

-ELM is 84.8%, the mean false-positive rate is 0.08 h-1, and 

the performance index is 0.89. Compared to Method 1, the 

proposed system has the obviously better performance, also 

shows that the introduction of machine learning can improve 

the sensitivity and specificity at the same time. Compared to 

Method 2, both of the mean se and highest se of the proposed 

method are higher, and at the same time, the mean fpr is lower. 

P of the proposed method is the highest one, indicating that 

our method performs the best. 

V. CONCLUSIONS 

A new multichannel EEG feature extraction method has 

been proposed, which is consisting of HHT and ELM. HHT is 

utilized instead of commonly used HT and CWT, and ELM is 

adopted to extract the phase interaction information rather 

than MPC. In order to evaluate the performance of the 

proposed method, it was applied to the epileptic seizure 

prediction system, and careful comparison experiments on the 

Freiburg database were carried out. The results clearly 

indicate that the proposed method offers a better balance of 

sensitivity and false-positive rate. HHT is more suitable for 

nonlinear and nonstationary signal analysis, and HHT-ELM 

extracts the features representing the phase interaction 

information among all channels well. 
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