
A New Method of Concurrently Visualizing States, Values, and Actions

in Reinforcement based Brain Machine Interfaces

Jihye Bae,1 Luis G. Sanchez Giraldo,1 Eric A. Pohlmeyer,2

Justin C. Sanchez,2 Senior Member, IEEE, Jose C. Principe,1 Fellow, IEEE

Abstract— This paper presents the first attempt to quantify
the individual performance of the subject and of the computer
agent on a closed loop Reinforcement Learning Brain Machine
Interface (RLBMI). The distinctive feature of the RLBMI
architecture is the co-adaptation of two systems (a BMI decoder
in agent and a BMI user in environment). In this work, an agent
implemented using Q-learning via kernel temporal difference
(KTD)(λ) decodes the neural states of a monkey and transforms
them into action directions of a robotic arm. We analyze how
each participant influences the overall performance both in
successful and missed trials by visualizing states, corresponding
action value Q, and resulting actions in two-dimensional space.
With the proposed methodology, we can observe how the
decoder effectively learns a good state to action mapping, and
how neural states affect the prediction performance.

I. INTRODUCTION

Research in brain machine interfaces (BMIs) is a multi-

disciplinary effort involving fields such as neurophysiology

and engineering. Developments in this area have a wide

range of applications, especially for those with neuromus-

cular disabilities for whom BMIs may become a significant

aid. BMIs allow direct communication between the central

nervous system and a computer that controls an external

device such as a prosthetic arm for disabled individuals.

Neural decoding of motor signals is one of the main tasks

that needs to be executed by the BMI and it requires methods

that adapt and adjust to subtle neural variations.

Reinforcement learning (RL) is a general framework for

system adaptation to novel environments. It is similar to

the way biological organisms interact with the environment

and learn from experience. In RL, it is possible to learn

only from the information given by the environment, and

thus there is no need for a desired signal as in supervised

learning. Therefore, RL is a well suited candidate for the

neural decoding stage in BMI applications.

A BMI architecture based on reinforcement learning

(RLBMI) is introduced in [1]; successful applications of this

approach can be found in [2], [3], [4]. The key idea of

RLBMI is co-adaptation between two intelligent systems:

the BMI decoder in the agent and the BMI user in the

environment (Figure 1). Both systems learn how to earn

This work is partially supported by DARPA Contract N66001-10-C-2008.
1 Jihye Bae, Luis G. Sanchez Giraldo, and Jose C. Principe are

with Department of Electrical and Computer Engineering, University
of Florida, Gainesville, Florida 32611 USA jihyebae@ufl.edu,
principe@cnel.ufl.edu

2 Eric A. Pohlmeyer and Justin C. Sanchez are with Department of
Biomedical Engineering, University of Miami, Coral Gables, Florida 33146
jcsanchez@miami.edu

Fig. 1. RLBMI architecture.

rewards based on their joint behavior. The BMI decoder

learns a control strategy based on the user’s neural state and

perform actions in goal directed tasks that affect the state

of the external device in the environment. In addition, the

user learns the task based on the state of the external device.

Notice that both systems act symbiotically by sharing the

external device to complete their tasks, and this co-adaptation

allows for continuous synergistic adaptation between the

BMI decoder and the user even in changing environments.

Because the two intelligent systems work in closed loop

feedback it is not easy to tease apart their influence on

the overall performance. Therefore, an important task that

has not been addressed so far is the analysis of the effects

that one system has on the other. This analysis can provide

valuable information to elucidate ways to make the learning

algorithm robust to errors incurred by the user, and possibly

develop new algorithms to translate brain states and to derive

the policy. The performance analysis presented in this paper

is a first step towards developing decoding strategies that can

judge the reliability of the input states.

For the BMI decoder we chose Q-learning via kernel

Temporal Difference (KTD)(λ) [3], [5]. The behavior task

is a reaching task using a robotic arm, in which the decoder

controls the robot arm’s action direction by predicting the

monkey’s intent based on its neuronal activity. To tease

apart the influence of the subject and of the agent in task

completion, the distribution of the neural states along with

the learned Q function are visualized on a two dimensional

subspace using principal component analysis (PCA) [6]. The

policy implemented by the BMI decoder, which can be

derived from the corresponding Q values, is also displayed.

In the projected state space, we can pinpoint the location

of incorrect action predictions as well as the distributions of

successful trials to provide an indicator of the reliability of

neural states. These results help quantify the effects of each

learning system in the RLBMI.

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5402

II. REINFORCEMENT LEARNING FOR BRAIN MACHINE

INTERFACES (RLBMI)

For a given a Markov decision process (MDP) with states

x(t) ∈ X , actions a(t) ∈ A, a reward function r(t) ∈ R, and

a state transition probability Paxx′ = P (x(t+1) = x′|x(t) =
x, a(t) = a), RL finds an optimal policy π∗ : X → A which

maximizes the expected reward of all future actions given

the current knowledge of the environment.At time step t, the

agent receives the representation of the environment’s state

x(t) as input, and it selects an action a(t) accordingly. By

performing the selected action a(t), the agents receives a

reward r(t + 1), and the state of the environment changes

from x(t) to x(t+1). The new state x(t+1) evolves based

on the state transition probability Paxx′ given the action a(t)
and the current state x(t). At the new state x(t+1) the same

process repeats.

In the RLBMI architecture, the decoder updates the state

of the environment based on the subject’s neural activity

and the received rewards. The agent updates its decoder of

brain activity, and at the same time the subject produces

the corresponding brain activity. Through iterations, the

controller learns how to correctly translate neural states into

action direction pairs. Note that the subject has no direct

access to actions, and the decoder must interpret the subject’s

brain activity correctly to facilitate the rewards [1].

A. Agent

Q-learning via kernel Temporal Difference (KTD)(λ) is

applied to the neural decoding. Estimating value functions

is a fundamental step to finding an optimal policy. Typically

in RL, temporal difference algorithms approximate the value

function using a parametrized family of functions. A non-

parametric variant, KTD(λ) [3], [5], is obtained by approx-

imating the value function using a function f ∈ H, where

H is a reproducing kernel Hilbert space (RKHS) with re-

producing kernel κ(·, ·), such that f(x(t)) = 〈f, φ(x(t))〉 =
〈f, κ(x(t), ·)〉, ∀f ∈ H with a mapping function φ(x(t)) :
X → H and a positive definite function κ : X × X → R.

The KTD(λ) update rule is

f ← f+η
m∑

t=1

(〈f, φ(x(t+1))〉−〈f, φ(x(t))〉)
t∑

k=1

λt−kφ(x(k)),

(1)

where η is the stepsize and m is the number of steps until

the target is reached (steps per trial).

We can find an optimal policy π∗ based on the action

value function Q(x(t), a(t)) = E[R(t)|x(t), a(t)] where the

return is defined by an infinite-horizon discounted model

R(t) =
∑
∞

k=0 γ
kr(t+ k + 1) with discount factor 0 < γ <

1. Since value functions represent the expected cumulative

reward given a policy, we can say that the policy π is better

than the policy π′ when the policy π gives greater expected

return than the policy π′. In other words, π ≥ π′ if and only

if Qπ(x) ≥ Qπ
′

(x) for all x ∈ X . Therefore, the optimal

action value function Q can be obtained by Q∗(x(t), a(t)) =
maxπ Q

π(x(t), a(t)). Q-learning [7] estimates the optimal

value function online. Based on Q-learning, the update rule

for KTD(λ) (1) can be written as

f ← f + η
m∑

t=1

(r(t+ 1) + γmax
a
y(x(t+ 1), a)+

− y(x(t), a(t)))

t−1∑

k=1

λt−kφ(x(k)).

(2)

For single-step prediction problems (m = 1), (2) yields

single updates for Q-learning via KTD(λ) of the form

Qn(x(t)) = η

t−1∑

j=1

eTD(j)Ik(j)κ〈x(t), x(j)〉. (3)

Here, Qn(x(t)) = Q(x(t), a = n) denotes discrete actions,

eTD(t) denotes the TD error defined as eTD(t) = rn +
γQm(x(t+1))−Qn(x(t)), and Ik(t) is an indicator vector

with the same size as the number of outputs. This means that

only the kth entry of the vector is set to 1 and the rest of the

entries are 0. The selection of the action unit k at time t can

be based on a greedy method. Therefore, only the weight

(parameter vector) corresponding to the winning action gets

updated. Recall, that the reward rn corresponds to the action

selected by the current policy with input x(t) because it is

assumed that this action causes the next input state x(t+1).

B. Environment

During pre-training, a marmoset monkey has been trained

to perform a reaching task with targets at two spatial loca-

tions (A or B trial). After one target is assigned, the trial starts

with a beep. To conduct the trial during the user training

phase, the monkey is required to steadily place its hand on

a touchpad for 700 ∼ 1200ms. This action produces a go

beep that is followed by one of the two target LEDs being

lit on (A trial: red light at left direction or B trial: green

light at right direction). The robot arm goes up to home

position; i.e. the center position between the two targets.

Its gripper shows an object (food reward such as waxworm

or marshmallow for A trial and undesirable object, wooden

bead, for B trial). For A trial, the monkey should move its

arm to a target sensor within 2000ms, and for B target, the

monkey should hold its arm on the initial sensor for 2500ms.
If the monkey successfully conducts the task, the robot arm

moves to the assigned location, and the target LED light

blinks. The monkey gets a food reward.

After the monkey is trained to perform the assigned

task properly, a micro-electrode array (16-channel tungsten

microelectrode arrays, Tucker Davis Technologies, FL) is

surgically implanted under isoflurane anesthesia and sterile

conditions. In the closed loop RLBMI, neural states from the

motor cortex (M1) are recorded. These neural states become

inputs to the neural decoder. All surgical and animal care

procedures are consistent with the National Research Council

Guide for the Care and Use of Laboratory Animals and are

approved by the University of Miami Institutional Animal

Care and Use Committee. In the closed loop experiment,

after the initial holding time that produces the go beep,

5403

the robotic arm’s position is updated based solely on the

monkey’s neural states, and the monkey is not required to

perform any movement unlike the user pre-training sessions.

III. METHOD

The decoder provides a mapping between neural states and

actions which updates the robot arm’s position in the envi-

ronment. This change will influence the user’s subsequent

neural states because of the visual feedback involved in the

process. In other words, the input to the BMI decoder is the

user’s neural states, which can be considered to be the user’s

output. Likewise, the action directions of the external device

are the decoder’s output and because of the visual feedback

they can also be considered as the input to the user.

In the two-target reaching task, the decoder contains two

output units representing the functions Q(x, a = left) and

Q(x, a = right). The policy is determined by selecting the

action associated with one of these units based on their

Q values. The performance of the decoder is commonly

evaluated in terms of success rate by counting the successful

trials which reach the desired targets, along with the changes

in the TD error or the Q values. However, these criteria are

not well suited to understand how the two intelligent systems

interact during learning. For instance, if there is a change in

performance or an error in the decoding process it is hard

to tell which of the two subsystems is more likely to be

responsible for it.

Another added difficulty in evaluating the user’s output

is that the neural states are high dimensional vectors. In

this sense, we want to apply an unsupervised dimensionality

reduction technique to produce an output that can be visual-

ized and easily interpreted. We have found out that principal

component analysis (PCA) on the set of observed neural

states is sufficient for the goal of this analysis. PCA is a well

known method to transform data to a new coordinate system

based on eigenvalue decomposition of a data covariance.

Let X = [x(1), x(2), · · · , x(t)]⊤ be the data matrix

containing the set of observed states during the closed loop

experiment until time t. A transformed dataset Y = XW can

be obtained by using the transformation matrix W, which

corresponds to the matrix of eigenvectors of the covariance

matrix n−1
X
⊤
X. Without loss of generality we assume that

the data X has zero mean. The distribution of states up to

time t can be visualized by projecting the high dimensional

neural states into two dimensions using the first two largest

principal components.

In this two-dimensional space of projected neural states,

we can also show the relation with the decoder by com-

puting the outputs of the units associated with each one

of actions and displaying them as contour plots. A set of

two-dimensional space locations Ygrid evenly distributed on

the plane can be projected in the high dimensional space of

neural states as X̂ = YgridW
⊤. Let Q

(t)
n be the n unit from

the decoder updated using (3) at time t. We can compute the

estimated Q values at a point y on the two dimensional plane

using Q̂(t)(x̂ = Wy, a = n). In this way, we can extrapolate

the possible outputs that the decoder would produce in the

vicinity of the already observed data points. Furthermore, the

final estimated policy can be obtained by selecting the action

corresponding to the unit with the highest Q value.

Here, we visualize the neural states, corresponding Q
values, and the policy π related to the final performance.

Thus, the final learned decoder Q̂(T) and all the neural states

X are utilized; that is, t = T and X is size T × d where

d is the dimension of the neural state vectors. Notice that

the proposed method can also be applied at any stage of the

learning process; we can observe the behavior of two systems

at any intermediate time by using the subset of neural states

that have been observed as well as the learned decoder up

to this time.

IV. EXPERIMENTAL RESULTS

A closed loop RLBMI using Q-learning via the KTD

algorithm is implemented. During the real-time experiment,

14 neurons are obtained from 10 electrodes. The neural

states are represented by the firing rates on a 2sec window

following the go signal. The overall performance is evaluated

by checking whether the robotic arm reaches the assigned

target or not. Once the robot arm reaches the target, the

decoder gets a positive reward +1, otherwise, it receives

negative reward −1.

For KTD(λ), the Gaussian kernel κ(x(i), x(j)) =
exp(−‖x(i)−x(j)‖2/2h2) is employed. The kernel size h is

automatically selected based on the history of inputs. Note

that in the closed loop experiments, the dynamic range of

states varies from experiment to experiment, consequently,

the kernel size needs to be readjusted each time a new

experiment takes place and cannot be determined before

hand. Therefore, we use the values of the distances between

all the previously observed states to select the kernel size.

At each time, from all squared distances between pairs of

previously seen input states, we can obtain an estimate of

the mean distance, and this value is also averaged along with

past kernel sizes to assign current kernel size. In addition,

the initial error is set to zero, and the first input state vector

is assigned as the first unit’s center. Normalization of the

input neural states is not applied, and a stepsize η = 0.5 is

used. Moreover, we consider γ = 1 and λ = 0 since our

experiment performs single step trials in (2).

Figure 2 shows the performance of decoder for 2 experi-

ments; The first experiment (left column) has a total of 20

trials (10 A trials and 10 B trials); the overall success rate

is 90%. Only the first trial for each target is mis-assigned.

The second experiment (right column) has a total of 53

trials (27 A trials and 26 B trials), with overall success rate

of 41/53 (around 77%). Although the success rate of the

second experiment is not as high as the first experiment, both

experiments show that the algorithm provides an appropriate

neural state to action map. Even though there is variation

among the neural states within each experiment, the decoder

adapts well to minimize the TD error, and the Q values

converge to the desired values for each action.

Figure 3 presents the visualization of the distribution of the

14 dimensional neural states projected into two dimensions

5404

Estimated PolicyEstimated Policy Estimated Policy

Fig. 3. The estimated Q values (a, b, d, e) and resulting policy (c, f) for the projected neural states using PCA from experiment 1 (a, b, c) and experiment
2 (d, e, f). (a) and (d) show the Q values for “right” direction, and (b) and (e) show the Q values for “left” direction.

Fig. 2. Performance of Q-learning via KTD in the closed loop RLBMI
performed by a monkey for experiment 1 (left) and experiment 2 (right);
The success (+1) and failure (-1) index of each trial (top), the change of
TD error (middle), and the change of Q values (down).

as described in the previous section. The corresponding

contour levels are computed based on the Q values that are

estimated using the learned decoder from the closed loop

experiment. In addition, we provide the partition for left and

right actions in the projected two dimensional space, which

corresponds to the final policy derived from the estimated

Q values. The projection shows that the neural states from

the two classes are separable. As we expected, the Q values

for each direction have higher values on regions occupied by

the corresponding neural states. For example, the Q values

for the right direction have larger values for the areas filled

by the states corresponding to B trial. This is confirmed by

showing the partitions achieved by the resulting policy.

During the training session, the success rates are highly

dependent on the monkey’s performance. Most of the times

when the agent predicts the wrong target, it is observed that

the monkey is distracted, or it is not interacting with the task

properly. We are also able to see this phenomenon from the

plots: the failed trials during the closed loop experiment are

marked as red stars (missed A trials) and green dots (missed

B trials). We can see that most of the neural states that are

misclassified appear to be closer to the states corresponding

to the opposite target in the projected state space. This

supports the idea that failure during these trials is mainly

due to the monkey’s behavior and not to the decoder. From

(c) and (f), the decoder can predict nonlinear policies. In

addition, (f) shows that the system effectively learns and

goes from an initially misclassified A trial (during the online

closed loop), which is located near the border and right

bottom areas, to a final decoder where the same state would

be assigned to the right direction. It is a remarkable fact that

the system adapts to the environment on-line.

V. CONCLUSION

Q-learning via KTD is applied to closed loop RLBMI

experiments. For the reaching task described above, the

algorithm is able to decode the monkey’s neural state into the

robot arm’s position properly. To check the influences of the

BMI decoder and the subject on the overall performance, we

propose a methodology to visualize how each trial’s neural

state and the corresponding Q values are distributed. From

the projected neural states, we can see that mislabelled neural

states can cause the missed trials. Moreover, from the final

estimated policy, we verify that the adaptation process works

properly. Using this method, we can also observe how the

adaptation process takes place sequentially in the decoder

based on the incoming neural states. Note that instead of

PCA, other unsupervised dimensionality reduction methods

can be employed as long as there exist a suitable way to

obtain pre-images that can be input to the decoder.

REFERENCES

[1] J. DiGiovanna, B. Mahmoudi, J. Fortes, J. C. Principe, and J. C.
Sanchez, “Coadaptive brain-machine interface via reinforcement learn-
ing,” IEEE Trans. on Biomedical Engineering, vol. 56, no. 1, 2009.

[2] B. Mahmoudi, “Integrating robotic action with biologic perception:
A brain machine symbiosis theory,” Ph.D. dissertation, University of
Florida, 2010.

[3] J. Bae, P. Chhatbar, J. T. Francis, J. C. Sanchez, and J. C. Principe,
“Reinforcement learning via kernel temporal difference,” in EMBC,
2011, pp. 5662 – 5665.

[4] E. A. Pohlmeyer, B. Mahmoudi, S. Geng, N. Prins, and J. C. Sanchez,
“Brain-machine interface control of a robot arm using actor-critic
rainforcement learning,” in EMBC, 2012, pp. 4108 – 4111.

[5] J. Bae, L. Sanchez Giraldo, P. Chhatbar, J. T. Francis, J. C. Sanchez, and
J. C. Principe, “Stochastic kernel temporal difference for reinforcement
learning,” in MLSP, 2011.

[6] I. Jolliffe, Principal Component Analysis. Springer, 2002.
[7] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-

tion, University of Cambridge, 1989.

5405

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

