
  

  

Abstract— The accurate diagnosis of Alzheimer’s disease 
(AD) at different stages is essential to identify patients at high 
risk of dementia and plan prevention or treatment measures 
accordingly. In this study, we proposed a new AD staging 
method for the entire spectrum of AD including the AD, Mild 
Cognitive Impairment with and without AD conversions, and 
Cognitive Normal groups. Our method embedded the high 
dimensional multi-view features derived from neuroimaging 
data into a low dimensional feature space and could form a 
more distinctive representation than the naive concatenated 
features. It also updated the testing data based on the Localized 
Sparse Code Gradients (LSCG) to further enhance the 
classification. The LSCG algorithm, validated using Magnetic 
Resonance Imaging data from the ADNI baseline cohort, 
achieved significant improvements on all diagnosis groups 
compared to using the original sparse coding method. 
 

I. INTRODUCTION 

Alzheimer’s disease (AD) is the most common 
neurodegenerative disorder among aging people and its 
dementia symptoms gradually deteriorate over years. AD 
usually develops in 3 stages as the pathology evolves from 
cognitive normal (CN) through mild cognitive impairment 
(MCI) to dementia. MCI represents the transitional state 
between AD and CN with a high conversion rate to AD. 
There are 40% MCI patients from the Alzheimer’s Disease 
Neuroimaging Initiatives (ADNI) [1] baseline cohort 
converted to AD within two years, whereas only 3.9% for 
normal aging subjects developed AD during the same period 
[2]. The accurate diagnosis of AD at different stages, 
especially the early detection, is important in identifying 
subjects at high risk of dementia, thereby taking appropriate 
intervention or prevention measures accordingly. 

Neuroimaging, such as Magnetic Resonance Imaging 
(MRI) and Positron Emission Tomography (PET), is a 
fundamental component in the diagnosis of AD and MCI, 
and also an important indicator in disease monitoring and 
therapy assessments [3,4]. A variety of neuroimaging-based 
classification methods in AD and MCI have been proposed 
[5-9]. Most of current studies of AD and MCI simplified the 
classification problem into two-class classification problems, 
i.e., AD vs. CN [5-8] and/or MCI vs. CN [6-9]. However, 
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the staging of AD is indeed a multi-class classification 
problem leading to the necessity of the investigation of 
whole spectrum of AD, i.e., AD, MCI and CN subjects need 
to be identified in a single setting. The MCI subjects could 
be further classified into two subgroups, MCI converter 
(cMCI) and MCI non-converter (ncMCI), depending on 
whether they developed into AD in the short term (usually 
0.5 to 3 years). The classification of AD, CN and MCI 
(ncMCI and cMCI) is challenging because there are more 
interferences in a multi-class model than in a two-class 
model.  

There are several studies [10-13] on multi-class 
classification in AD, cMCI and ncMCI. These studies were 
conducted in the same fashion. The features were first 
extracted from the neuroimaging data, usually MRI [10-13] 
and/or PET [11], and sometimes combined with others 
biomarkers, e.g., cerebrospinal fluid (CSF) measures [11], 
genetic biomarkers [12] and clinical assessment scores [12]. 
The concatenated features [13] or a subset of the features 
selected using feature selection algorithms, e.g., feature 
selection based on stability of sparse codes [12], were 
subsequently used to train the classifiers, e.g., support vector 
machines (SVM). Finally, the derived classifiers were used to 
solve the classification [10,11] or detection [12,13] problems.  

We believe the workflow of the above-mentioned studies 
could be optimized in two ways. 1) Instead of concatenating 
the multi-modal/multi-view features into a high dimensional 
feature vector or selecting a subset of features to represent 
the subjects, we may embed the high dimensional 
multi-modal/multi-view features into a low dimensional 
space. Such embeddings may reduce the complexity of high 
dimensional feature space without discarding less important 
features. 2) The classifiers, e.g., SVMs, enforce the global 
consistency and continuity of the boundaries and ignore the 
local classification. However, we believe we could 
incorporate such local information in addition to the 
subject’s feature values to further enhance the classification. 
For example, the oriented gradient in a subject’s local 
neighborhood could reveal the most possible change of the 
subject over time and help to classify the subject with 
stronger confidence.  

Therefore, in this study, we proposed a new multi-class 
classification enhancing method for the entire spectrum of 
AD based on the Localized Sparse Coded Gradients (LSCG) 
incorporating the information of the subjects’ local 
neighborhoods. This method is capable of integrating 
multi-view features to form a more distinctive representation 
than the naive features, and also could automatically update 
testing set based on LSCG. The proposed method was 
validated on 4 diagnosis groups from the ADNI baseline 
cohort and it showed a great potential to enhance the AD 
staging. 
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II. METHODS 

A. Neuroimaging Data Pre-processing 
The neuroimaging data used in this work were obtained 

from the ADNI database (adni.loni.ucla.edu) [1]. In total, 
331 subjects were randomly selected from the ADNI 
baseline cohort, and a T1-weighted volume acquired on a 1.5 
Tesla MR scanner was retrieved for each subject. The 
sample dataset included 85 AD cases, 169 MCI cases and 77 
cognitive normal subjects. The MCI group was further 
divided into two sub-groups. There were 67 MCI subjects 
converted to AD in half to 3 years from the first scan, and 
they were considered as the MCI converters (cMCI). The 
other 102 MCI subjects in the MCI group were then 
considered as the non-converters (ncMCI).   

All ‘raw’ 3D MRI data were converted to the ADNI 
format following the ADNI MRI image correction protocol 
[13]. We then nonlinearly registered the MRI images to the 
ICBM_152 template [14] using the Image Registration 
Toolkit (IRTK) [15]. We mapped 83 brain structures in the 
template space using the multi-atlas propagation with 
enhanced registration (MAPER) approach [16] on each 
registered MRI image. 

B. Feature Extraction 
Three types of features extracted from multi-views were 

used in this study including the Grey Matter (GM) volume, 
solidity and convexity. The grey matter volume features of 83 
brain regions were extracted from each registered MRI image 
as the representations in the first view !!!"#

!!! ! !!!!"! for the 
!!! image. We further normalized the !!"#

! !!! for each brain 
region (indexed by !) by the volume of the brain mask as a 
fraction of the whole brain.

Label CN ncMCI cMCI AD 

 
Left 

Hippocampus 

    
Volume (%)  0.1570 0.1570 0.1570 0.1570 

Solidity 0.8578 0.7305 0.6735 0.7932 
Convexity 0.8431 0.8434 0.8606 0.8577 

Figure 1. The volume, convexity and solidity features. The 3D 
volume-rendered images were generated using the 3D Slicer software 

(Version 4.1) [17,18]. 

While the GM volume feature had been widely used in 
many studies [5-8], it was not reliable due to anatomical 
variability between subjects. Figure 1 shows 4 examples from 
the 4 diagnosis groups of the same brain region, the left 
hippocampus, which is an important biomarker in AD. The 
GM volume features were not able to distinguish the 
differences between the 4 subjects, because the GM volume 
values were identical, although the AD subject presented 
clear atrophy. Therefore, we proposed two other features, the 
convexity ( !!"#

!!! ! !!!!" ) and solidity ( !!"#
!!! ! !!!!" ) in 

addition to the GM volume features. Both convexity and 
solidity required the convex hull. The !!"#

! !!! was defined as 
in the ratio of the convex hull surface area to the surface area 

of !!! region of interest; and the !!"#
! !!! was the ratio of the 

volume of !!! region of interest to the volume of the convex 
hull. The convexity and solidity provided the complementary 
information to the volume features in describing the brain 
region atrophy. Figure 1 also shows the convexity and 
solidity values of the left hippocampus for the 4 subjects. 

The three types of features extracted from multi-views 
were then concatenated to form a tripled sized feature vector, 
!! ! ! !!!!"#, as a naive representation of each subject.  

C. Sparse Auto-encoder  
Given the concatenated feature vectors, ! ! !!!!!!!! !

!!"! !! ! !"#!, we then computed the sparse codes using a 
sparse auto-encoder [19]. The sparse auto-encoder is a 
special case of the neural-network. A sparse auto-encoder 
has three layers, the input layer, hidden layer, and output 
layer. The outputs of a sparse auto-encoder are constrained
to be the same as the inputs. We set such constrains to find 
the internal structure of the input data and thus optimally 
embed the original input feature space to a new feature
space. Assuming a sparse auto-encoder has
!! -hidden-neurons, thus the sparse codes for each input 
vector is !!"

! ! !!!!! . 

The goal of a sparse auto-encoder is to minimize the 
following cost function, as in (1):  

!"#!!"#
!

!
!

!
!
!!!! ! !!!! !

!

!!!

!""#"!!"#$

!
!
!

!!!!!!
!!!!!

!

!

!!!

!"#$!!!!"#$

! ! !"!! !!!
!

!!!

!"#$%&'(!!"#$

 
(1) 

where !!!!  is the estimated output of !!!! , !!  and !!  are
!!!!! and !!!!! matrices representing the weights on the 
neurons in conjunctive layers, !!  is the average activation of 
!!!  hidden neuron, !"!! !!  is the Kullback-Leibler 
divergence between two variables. We could use !, ! and !
to control the ratios of the 3 cost functions, error cost, weight 
cost and sparsity cost. In this study, we solved this 
optimization problem through L-BFGS algorithm [20]. The 
sparse codes were then derived as in (2): 

!!"! ! !!!!!! (2)

where ! ! !!!!! , !! ! !!!!!! , and !!"! ! !!!!! . !!  is  
usually set of a value smaller than !! , thus the high 
dimensional inputs could be embedded into a low 
dimensional space. Therefore the sparse auto-encoder
completed multi-view feature embedding and dimension 
reduction simultaneously. 

D. Localized Sparse Code Gradient  
We assumed that the classification of a given case was 

not just based on the feature values of the subject in the 
feature space, but also affected by the local circumstance. 
Although SVM defined the hard boundaries in the 
kernelized space, the localized information could reduce the 
bias of the testing subjects near boundaries. It could be 
useful especially when a large number of support vectors
were used in SVM. Figure 2 shows a toy example of 4 
scenarios of a simple SVM. The color boxes indicate the 
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neighborhoods. If we update the subjects’ positions in the 
feature space by its local gradients as indicated by the 
arrows, then we may retain the correct classification of 
scenarios (1) and (3), and increase the margin of scenario (2), 
and correct the classification of scenario (4).  

Figure 2. The toy examples of the 4 scenarios (shown in different color 
boxes) in the proposed LSCG algorithm. The localized gradients are 

determined by the center of gravity of the neighborhoods. Note that in 
scenario (1), the subject has no neighbors in the neighborhood, so the 

subject’s position will not change. 

The sparse codes !!!"! ! !!!!!!  derived from the 
sparse auto-encoder were divided into 2 subsets, a training 
set !!!"!! ! !!!!!!!  with !!  subjects and a testing set 
!!!"!! ! !!!!!!!  with !! subjects. We then modeled the 
localized information of !!"!!  given !!"!!  as local sparse code 
gradients (LSCG). In the feature space of !!"! , we defined a 
local neighborhood space with radius of ! for each subject in 
the testing subset, !!"

!!!!! . We then detected the training 
subjects (!!"!!

!
) within the local neighborhood of !!"

!!!!. The 
detected !!"!!

!
 formed a subset of the training subjects (!!"!! ) 

and we believe it could provide important local information 
for !!"

!!!!!. We argued that the neighbors could help to reveal 
the circumstance of the subjects in addition to the feature 
values alone. We then calculated the LSCG as in (3): 

!!!"
!!!! ! ! ! !!"

! ! ! !!"
!!! !

!!!

!!!

! !
!!"
!!! ! ! !!"

! !

!!"
!!! ! ! !!"

! ! !! 

s.t.     !!! !!"
!! ! ! !!"

! ! !
! ! 

(3) 

where!! !!! ! ! ! !! !!"
!!!!!!!!!"

!!!! !

 was the control function, 

and ! ! !"#!! !!"
! ! ! !!"

!!! ! !
!  was the smallest distance 

between !!"
!!!!  and subjects in !!"!!

!
. The control function 

controlled the magnitudes of the gradients to assign more 
weights of closer neighbors and also ensured the largest 
possible movement is less than the !. Finally, we update the 
!!"
!!!! to generate !!"#$

!!!!  the as in (4): 

!!"#$
!!!! ! !!"

!!!! ! !!!!"
!!!! (4) 

where ! is the amplitude parameter to control the overall 
oscillations of !!"#$

!!!! .  

When using LSCG algorithm, the SVMs were trained 
with the same training set as the original sparse codes, but 
the testing set was updated based on LSCGs, which provide 
important insight of the local neighborhood and enhance the 
overall classification with the local information. 

E. Performance Evaluation 
The proposed method was validated using the entire 

spectrum of AD, including 331 subjects in 4 diagnosis 
groups, as described in Section II.A. We built a set of binary
SVMs with the radial basis function (RBF) kernels as the 
classifiers and the average classification accuracy of 4 
diagnosis groups was used to evaluate the performance of 
different features. A leave-50%-out 10-fold cross-validation 
paradigm was adopted throughout the whole process of 
performance evaluation. The optimal trade-off parameter (!)
and the kernel parameter !!! for SVM were estimated via
grid-search. All SVM based cross-validations and 
performance evaluations were conducted using LIBSVM 
library [21]. 

We first evaluated the performance of the naive
concatenated features and then compared the best 
performance of it to that of the sparse coding methods with
different sparsity settings. We intuitively tested the !!
sequences   with ! ! ! ! !", based on the assumption that 
the performance increased slower as the number of hidden 
neurons became larger. The optimal SVM settings of the
desired sparse auto-encoder were inherited in LSCG 
evaluation, because the LSCG algorithm did not change the 
training set and the optimal parameter settings for SVM 
remained the same. Furthermore, we also used grid-search 
to determine the optimal radius parameter (!) and amplitude
parameter (!) in the LSCG algorithm.  

III. RESULTS 

 
Figure 3. The performance of naive concatenated features and the sparse 

codes with different number of hidden neurons. 
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Figure 3 shows the performance of naive concatenated 
features and the sparse codes with different sparsity settings. 
The two values in each bracket represent optimal setting of 
𝐶 and 𝛾 in SVM with RBF kernels. The x-axis represents the 
number of hidden neurons, and also the dimension of the 
derived sparse codes.  The best performance achieved by the 
naive concatenated features (249 dimensional) has a 10-fold 
cross validation average accuracy of 39.9%, as indicated by 
the red dashed line. When the number of hidden neurons 
were larger than 4, the sparse codes could outperform the 
naive concatenated features. This proved that sparse 
auto-encoder was very effective in multi-view feature 
embedding. In addition, when the number of neurons was set 
larger than 36, the performance improved slowly. Therefore, 
we set the number of hidden neurons in the sparse 
auto-encoder as 36, and then applied the optimal SVM 
settings C = 1400, 𝛾 = 0.01  to the LSCG algorithm.  

TABLE I.  CLASSIFICATION RATE (%) OF THE PROPOSED ALGORITHM 
COMPARED TO THE ORIGINAL SPARSE CODES (SC). BOTH METHODS WERE 

BASED ON OPTIMIZED SVM WITH (C  =  1400,    𝛾  =  0.01).   

Algorithm      Prediction 
Diagnosis 

CN ncMCI cMCI AD 

Original SC  

CN 44.7 44.7 5.3 5.3 
ncMCI 27.5 49.0 13.7 9.8 
cMCI 11.8 38.2 26.5 23.5 
AD 14.3 16.7 4.7 64.3 

Proposed LSCG 
𝛼 = 0.5
  𝑟 = 0.21   

CN 63.2 28.9 2.6 5.2 
ncMCI 27.5 52.9 7.8 11.8 
cMCI 8.8 35.3 32.4 23.5 
AD 4.8 14.3 4.7 76.2 

Table I. shows the results of the proposed LSCG 
algorithm compared to the original sparse codes (SC) using 
the optimized RBF SVMs. The optimal parameter setting of 
LSCG algorithm are 𝛼 = 0.5, 𝑟 = 0.21 , obtained through 
grid-search. The LSCG method formed discriminating 
representations based the original SC and outperformed the 
original SC thoroughly. The largest improvements were 
achieved on CN and AD groups with an increase of 18.5% 
and 11.9% respectively. The cMCI and ncMCI groups also 
showed slight increase, yet with poor performance. The 
classifier had the lowest classification accuracy in cMCI, and 
most of the type 1 errors occur between ncMCI and cMCI.  

IV. DISCUSSION 
In this study, we applied the sparse auto-encoder to 

embed the concatenated multi-view features in a lower 
feature space in one step instead of two steps taken by the 
conventional multi-view feature embedding methods: 1) 
embedding the single-view features separately; and 2) 
concatenating the embedded features to synthesized features. 
This is because the sparse auto-encoder automatically 
updates weights towards the lowest overall cost, and requires 
no manual concatenation of the sparse codes of single-view 
features. We further proposed the LSCD to model the local 
information of the testing dataset based on the assumption 
that a large number of support vectors were used in the 
SVMs. When we built the SVMs for the entire AD spectrum 
with different settings, we found the number of support 
vectors varied from 70 to 140 (with 166 or 165 training 
subjects). This large number of support vectors enables our 
method to work more effectively.  

V. CONCLUSIONS AND FUTURE WORK 
In this study, we present an AD staging method on the 

entire spectrum of AD based on the localized sparse coded 
gradients. This method is capable of integrating the 
multi-view features and optimally embedding them in a 
lower dimension feature space to form a more distinctive 
representation. The method also automatically updates 
testing set based on LSCGs and thereby could further 
enhance the AD and MCI classification. Marked 
improvements are achieved by the proposed method on all 
diagnosis groups, yet the classifications of cMCI and ncMCI 
are still more challenging than AD and CN. Therefore, in 
our future work, more efforts will be put on the MCI group 
and other imaging biomarkers that are able to detect the 
subtle functional and anatomical changes, such as PET and 
DTI, will be investigated.  
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