
  

 

Abstract— Various odorants such as carbon dioxide (CO2) 

and 1-octen-3-ol, underlie the host-seeking behaviors of the 

major malaria vector Anopheles Gambiae. Highlighted by the 

olfactory processing strength of the mosquito, such a powerful 

olfactory sense could serve as the sensors of an artificial 

olfactory biosensor. In this work, we use the firing rates of the 

A. Gambiae mosquito Olfactory Receptor Neurons (ORNs), to 

train an Artificial Neural Network (ANN) for the classification 

of volatile odorants into their known chemical classes and assess 

their suitability for an olfactory biosensor.  

With the implementation of bootstrapping, a more 

representative result was obtained wherein we demonstrate the 

training of a hybrid ANN consisting of an array of Multi-Layer 

Perceptrons (MLPs) with optimal number of hidden neurons. 

The ANN system was able to correctly class 90.1% of the 

previously unseen odorants, thus demonstrating very strong 

evidence for the use of A. Gambiae olfactory receptors coupled 

with an ANN as an olfactory biosensor. 

I. INTRODUCTION 

Malaria is a disease caused by a parasite called 
Plasmodium which is transmitted via the bites of infected 
mosquitoes and it afflicts hundreds of millions of people 
each year [3]. The Anopheles Gambiae mosquito is 
recognized as a major malaria vector, contributing to 
widespread transmission of the disease throughout sub-
Saharan Africa [1].  Both carbon dioxide (CO2) and 1-octen-
3-ol are emitted by humans and are known as universal 
attractants to many mosquito species [4, 5]. Thus, olfaction 
is known to play a major role in the behavioral aspects of 
vector-human interactions of the A. Gambiae. 

An olfactory biosensor device that emulates the odor 
sensing behaviors of the A. Gambiae can be developed to 
detect and recognize odors. Such a product can potentially 
be used in olfactory testing, providing an alternative to 
methods such as gas chromatography [6] and gas 
chromatography-mass spectrometry [7] that have inadequate 
sensitivity and exhibit instability. 
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A. The Mosquito Olfactory System 

Through the use of its Olfactory Receptor Neurons 
(ORNs), the A. Gambiae responds to a myriad of chemicals 
to perform functions such as host-seeking and nectar feeding 
[4, 8, 9]. The antenna and maxillary palp of the A. Gambiae, 
as illustrated in Fig. 1, are populated by sensilla that house 
the ORNs. Sexual dimorphism is present in the A. Gambiae, 
where a female mosquito possesses three to four times more 
antennal sensilla than males [10]. This reflects the 
importance of olfaction in the female’s role of reproduction 
as it feeds on a host’s blood as a source of protein for the 
development of eggs. 

 

The numerous pores or slits along the walls of the 
olfactory chemosensilla allow for the site entry of odorant 
molecules. The high concentrations of Odorant Binding 
Proteins (OBP) in the aqueous lymph solubilise the odorants 
and provide a medium of transport across the aqueous 
environments of the sensillum [10]. The solubilized odorants 
are delivered to receptors on the dendrites of Olfactory 
Sensory Neurons (OSNs) that extend up into the lymph.  

The clustering of OSNs in a sensillum allows for 
physiological analysis on the cellular level [10]. 
Electrophysiological recordings have revealed that different 
morphological classes of sensilla are functionally distinct, 
exhibiting characteristic spontaneous firing rates. ORNs of 
some single-walled sensilla responded to pheromones, others 
to food odours [11], while double-walled sensilla were 
sensitive to polar compounds such as amines and carboxylic 
acids [8, 12]. OSNs present an axon structure that extends to 
the antennal lobe, where those that express the same receptor 
converge to a glomerulus. Local interneurons within the lobe 
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Figure 1.  The Anopheles Gambiae utilizes its antennae and 

maxillary palps for odor sensing, among other things [1]. Hair-like 

sensilla cover the maxillary and act as sensory receptors [2]. 
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modulate the signals and projection neurons transduce the 
information to the higher brain of the mosquito. 

B. Designing an Artificial Olfactory System 

The data acquisition method used by Carey, et al. [13], in 
which the resulting data is used by this work, is based on the 
experiments conducted by Hallem, et al. [14]. It involves 
using a mutant ‘empty’ sensory neuron to express each 
individual olfactory receptor. Recordings of firing rates in 
response to various volatile chemicals were subsequently 
documented. Of the 72 Anopheles Gambiae Olfactory 
Receptors (AgOrs) expressed in the empty neuron, 50 AgOrs 
were found to be functional in which they exhibit 
spontaneous firing rate and excitatory and/or inhibitory 
responses to the odorant stimuli [13].  

In line with the combinatorial model of odor coding [14, 
15], Carey, et al. [13] found that individual receptors 
responded to subsets of odorants and individual odorants 
activated subsets of receptors. Thus, classification of odorant 
molecules can be achieved by analyzing the information 
embedded in the neuronal firing rates of the AgOrs. 
Regression analysis and multivariate data analysis are 
statistical techniques widely used for classification [16]. 
However, an Artificial Neural Network (ANN) is employed 
for the analysis in this work. In our previous work, we have 
investigated odorant classification using ANNs on the firing 
rates of the Drosophila Melanogaster olfactory receptors 
[17, 18] and on chemical descriptor values [19].  

An ANN can be seen as a mathematical interpretation 
and simplification of the complex temporal properties of 
biological neurons [20]. The wires and interconnections 
defined between neurons of the ANN are modeled after the 
axons and dendrites found in biological neural networks. An 
essential element of the ANN is the activation function 
which simulates the electrical activity experienced by the cell 
membrane. The change in cell membrane potential represents 
the transfer of data through the biological information 
highway. These features allow ANNs to extract essential 
characteristics from data sets and make use of this 
information to predict values. Thus, ANNs are a viable 
method in the field of olfactory recognition which presents 
highly complex relationships between the data and the 
classes to which they belong to. 

II. RECOGNITION OF ODORANTS 

A. Data Used and Pre-Processing  

The data used in this work was obtained from the report 
by Carey, et al. [18] in which the firing rate from 50 ORNs 
of an adult mosquito to 104 different volatile odorant 
compounds was documented. The odorants fell into 9 
distinct chemical classes (with the number of chemicals 
listed in brackets): Carboxylic Acid (24); Terpene (8); 
Aldehyde (6); Ketone(9); Aromatic (18); Heterocyclics (9); 
Alcohols (15); Esters (11) and ‘Other’ (4). The ‘Other’ 
chemical class include components of human emanations 
that provide a strong attractant for several species of 
mosquito [21]. The data originally included odorants of the 
Amine, Lactone and Sulphur Compound classes; however, 

the chemical classes listed presented limited data, where 
each class contained less than four odorants. These chemical 
classes were subsequently removed from our analysis to 
prevent network overtraining and overgeneralization of the 
data [22]. In addition, large distributions of data has been 
found to negatively affect a networks error learning and its 
prediction performance  [23], hence the data was zero-
meaned and normalized prior to ANN testing. 

B. ANN Architecture and Training 

For this work, the ANN architecture of a feed forward 
Multi-Layer Perceptron (MLP) with binary sigmoid 
activation functions is used to interpret the changes in firing 
rates of the A. Gambiae olfactory receptors. As highlighted 
by Baum [24], the quality of a solution relies heavily on the 
network size as it inherently affects the network’s learning 
time and generalization capabilities. We employed an array 
of single-output MLPs in parallel as depicted in Fig. 2, 
called the Hybrid network system [17, 19, 25], which 
allowed the system to capture more of the complex 
relationships present in the data. This hybrid system 
consisted of nine MLPs, where each MLP corresponded to a 
unique chemical class of the odorant data. 

 

Hidden layers have been found to have the ability to 
extract higher-order information [26] from a given data set, 
hence a double hidden layer structure was integrated into the 
hybrid system. Furthermore, by altering the number of 
neurons of the hidden layer(s), an optimum number of 

 

Figure 2.  Schematic of the Hybrid Multi-Layer Perceptron used 

classify the odorants into chemical classes. 
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hidden neurons that produce the best network performance 
can be found [18]. An input length of 50 neurons 
corresponding to the olfactory receptor sensors of the A. 
Gambiae was defined. A maximum layer length of 100 
neurons for the first and second hidden layer was established 
as it has been found that hidden layers with neurons more 
than double that of the input layer are ineffective as they 
require more training time and training samples to achieve 
adequate generalization [20, 27-29]. The size of the hidden 
layer(s) was incrementally altered and the network size 
which produced the best prediction performance was used. 

Network learning in this work is achieved by updating 
the network architecture via its weighting functions to 
produce an increasingly effective network. Back-propagation 
is the learning scheme employed. However, it is weak 
against the presence of local minima [20], thus a momentum 
function was applied to the system [30]. Supervised learning 
is employed in which each MLP of the hybrid system is 
assigned to a chemical class, creating a true output for the 
desired class and a false value for all other classes. 
Measurement of training time is based on an epoch, where a 
single epoch is defined when the complete, albeit randomly 
shuffled, training set has passed through the network.  

A symmetric Gaussian distribution with a zero mean and 
variance was used to obtain the weighting functions of the 
network, giving values between -1 and 1. Small weighting 
values were chosen to allow optimization of the ‘weight 
decay’ regularizer, which improves network generalization 
and prevents over-fitting the MLPs [31]. The stopping 
criterion chosen was based on reducing computational time 
[31], hence a series of initial simulations were performed 
which involved ending network learning based on a number 
of fixed iterations or if the prediction error fell below a 
defined limit. It was found that 200 epochs provided suitable 
CPU run times, wherein bootstrapping simulations lasted ~2 
weeks. Furthermore, prediction error cut-off was set to 0.01 
which occurred around 200 epochs for the optimal network. 

Bootstrapping methods are used to capture variability of 
simulations and to provide more accurate estimates of 
predicted values [32]. It involves repeatedly sampling B 
training and validation sets from a raw data set for refitting 
(retraining) of the system [32-34]. Though B typically ranges 
from 20 ≤ B ≤ 200, we have opted for 10,000 samples to 
ensure validity of the network’s error estimation. The 
application of bootstrapping will be presented as a bar graph 
of the mean and standard error of the network prediction. 

A validation set is applied on a trained MLP system to 
quantify the network’s learning and performance. It is 
composed of a random set of 11 chemical odorant vectors 
collected from the 104 available odorants. For each B 
sample, the validation set was obtained by randomly 
selecting 10% of the odorants from each chemical class. The 
number of odorants of each chemical class used in the 
validation set is: Carboxylic Acid (2); Terpene (1); Aldehyde 
(1); Ketone (1); Aromatic (2); Heterocyclics (1); Alcohols 
(1); Esters (1) and ‘Other’ (1). The remaining 93 odorants 
were used for the corresponding B training set.  

III. RESULTS 

The optimal MLP network size which produced the best 
performance is presented in Fig. 2: an MLP with 9 neurons 
in the first hidden layer and 55 neurons in the second hidden 
layer. Fig. 3 depicts the network performance of this Hybrid 
MLP system, which shows a spread in odorant prediction.  

Quantification of network learning is obtained by 
applying a prediction threshold on the performance of the 
validation set. This was determined as follows: the largest 
chemical class present in the data is the Carboxylic Acid and 
Aromatic group, they represent the most chemicals in the 
validation set i.e. out of the 11 validating odorants, 2 were 
known to be Carboxylic Acids. The probability of randomly 
choosing a Carboxylic Acid from the validation set was 2/11 
or 18.2%. This value was used to identify the minimum 
threshold level of detection and a ~5% margin was included 
as an added safeguard, producing a 23% threshold level for 
network prediction results, as illustrated by the horizontal 
broken lines in Fig. 3. Thus, prediction values exceeding the 
threshold value signified the classification of the odorant.  

As presented in Fig. 3, the MLP system on average 
classed 10 odorants with a range of 8 ≤ n odorants 
superseding threshold ≤ 10. The low performance of the 
‘Other’ class may be due to the odorants not having chemical 
similarities; they are classed together merely due to the A. 
Gambiae’s affinity toward them [21]. 

 

Extremely high and low performing odorants can 
potentially provide an undesirable effect of skewing the data 
and results; implementing bootstrapping successfully 
removes such unwanted characteristics. Furthermore, the 
effectiveness of implementing bootstrapping is seen when 
comparing previous works which did not utilize 
bootstrapping [17, 19]. By effectively removing the outliers, 

 

Figure 3.  Performance of the MLP system across the validation set. 

The horizontal broken lines represent the 23% threshold value that 

defines correct classification of an odorant of the validation set.  
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bootstrapping of the odorant data has given a more 
representative approximation of the network performance. 

IV. CONCLUSION 

In this work, we investigated the possibility of using the 
firing rates of Anopheles Gambiae mosquito Olfactory 
Receptor Neurons (ORNs) to train a Hybrid system of Multi-
Layer Perceptrons (MLPs) for the classification of unknown 
chemical odorants into their known chemical classes. By 
alternating the number of neurons of the hidden layers, an 
optimal size MLP was found. Using 93 chemical odorants to 
train the Hybrid system of Optimal Sized MLPs, we were 
able to correctly classify 90.1% of previously unseen 
odorants (i.e. 10 out of the 11 unseen chemicals of the 
validation set). Bootstrapping was used to provide an 
accurate estimate of prediction accuracy; however, the 
performance of the large MLP system could be further 
improved with a larger data set. The results of this work 
provide very strong evidence to suggest that ORNs from the 
A. Gambiae mosquito coupled with an Artificial Neural 
Network (ANN) could be used as an effective signal 
processing backend to an olfactory biosensor.  
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