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Abstract— Hypoglycemia is the most common but highly 

feared complication induced by the intensive insulin therapy in 

patients with type 1 diabetes mellitus (T1DM). Nocturnal 

hypoglycemia is dangerous because sleep obscures early 

symptoms and potentially leads to severe episodes which can 

cause seizure, coma, or even death. It is shown that the 

hypoglycemia onset induces early changes in 

electroencephalography (EEG) signals which can be detected 

non-invasively. In our research, EEG signals from five T1DM 

patients during an overnight clamp study were measured and 

analyzed. By applying a method of feature extraction using 

Fast Fourier Transform (FFT) and classification using neural 

networks, we establish that hypoglycemia can be detected 

efficiently using EEG signals from only two channels. This 

paper demonstrates that by implementing a training process of 

combining genetic algorithm and Levenberg-Marquardt 

algorithm, the classification results are improved markedly up 

to 75% sensitivity and 60% specificity on a separate testing set.  

 

I. INTRODUCTION 

For patients with type 1 diabetes mellitus (T1DM), the 
insulin therapy is crucial because the hormone is no longer 
produced by patients' bodies internally. However, this 
therapy induces an increased risk of hypoglycemia by three 
times [1]. Hypoglycemia is the medical term for the state 
produced by an abnormally low blood glucose level (BGL). 
This is considered as the most common but highly severe 
complication for patients with T1DM and a limiting factor of 
the intensive insulin therapy.  

Symptoms of hypoglycemia vary from mild to severe 
episodes. Mild hypoglycemia normally leads to early warning 
symptoms such as sweating, shaking, nervousness, heart 
plumping, confusion, etc. It can be easily alleviated by taking 
glucose-rich drink or food. If left untreated, it can become a 
severe episode which may progressively result in cognitive 
impairments, seizures, coma, and even death. A study in 
2004 reported that severe hypoglycemia happens in one third 
of 1076 self-reported  participants with an incidence rate of 
1.3 episodes/patient-year [2]. Nocturnal hypoglycemia is 
especially dangerous because sleep reduces and obscures 
warning symptoms, so that an initially mild episode may 
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become severe. It was reported previously that almost 50% of 
all episodes of severe hypoglycemia occur at night during 
sleep [3]. Because of its severity, intensive research has been 
devoted to develop systems that can detect the onset of 
hypoglycemic episodes, and then give an alarm to provide 
enough time for patients and carers to take action.  

Regarding correlation between hypoglycemia and 
electroencephalogram (EEG), since the EEG is directly 
related to the metabolism of brain cells, a failure of cerebral 
glucose supply can cause early changes in EEG signals. A 
number of studies have reported important traces in EEG 
signals induced by hypoglycemia episodes in T1DM patients 
[4, 5]. Recent studies also lead to acceptable results which 
show the potential ability of detecting hypoglycemia from 
EEG signals [6-8]. Nevertheless, all of these results need to 
be improved further in order to be applied into the real 
clinical environment.  

In terms of classification algorithm, artificial neural 
networks have been employed popularly in biomedical area 
as a powerful tool [9]. It has been recognized that neural 
network can successfully classify complex situations and 
effectively model non-linear relationships between inputs and 
outputs. One of the most popular training techniques is 
Levenberg-Marquardt (LM) which is based on the second-
order gradient information of an error function in order to 
direct the training process to a local optimal [10]. Genetic 
algorithm (GA) is a derivative-free global search 
optimization which is inspired by the natural evolution. This 
technique has been applied widely in evolving neural 
network models which can efficiently drive the training 
process to the global optimal [11].  

In our previous works, EEG signals of 5 T1DM children 
from a glucose clamp study were analyzed to find important 
spectral features to be used as inputs for a neural network 
based classification unit [8, 12]. This paper aims to propose a 
training strategy for neural network in order to enhance the 
performance of the developed classification algorithm. To do 
this, a combination of GA and LM is explored to utilize 
advantages as well as avoid limitations of each algorithm in 
training neural network. GA is used to locate the region of 
the global optimal consistently. LM algorithm acts as a fine 
tuner to help the training process quickly converge toward 
the global solution. Our main objective is to demonstrate that 
by applying a properly combined strategy to train neural 
network, the performance of hypoglycemia detection using 
only 2 EEG channels can be improved markedly.  Section II 
provides an overview of the methodology used in our study. 
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Results of the study will be mentioned in Section III. A 
conclusion for this study is drawn in Section IV.  

II. METHODS 

A. Study 

Five T1DM adolescents (between the ages of 12 and 18 
years old) volunteered for an overnight hypoglycemia study 
at the Princess Margaret Hospital for Children in Perth, 
Australia. During the study, EEG signals were continuously 
recorded and stored by a Compumedics system with the 
sampling rate of 128 Hz. The EEG electrodes were 
positioned at 4 channels O1, O2, C3 and C4 according to the 
International 10/20 system, referenced to A1 and A2. Also, 
we placed 2 electrodes at patients’ chins to acquire the 
electro-myogram (EMG) signals and 2 electrodes near 
patients’ eyes to measure the electro-oculogram (EOG) 
signals. The actual BGLs were routinely collected to be used 
as reference using Yellow Spring Instruments with the 
general sampling period of 5 minutes. Data were collected 
with the approval of the Women’s and Children’s Health 
Service, Department of Health, Government of Western 
Australia, and with informed consent.  

B. Signal Processing and Feature Extraction 

Raw EEG signals are filtered to get rid of unwanted 
artifacts by using IIR filters as well as a visually artifact-
rejecting method based on the corresponding EMG and EOG 
signals. After being filtered, non-artifact EEG signals are 
segmented into 5-second non-overlapping epochs. These 
epochs are labeled as hypoglycemia or non-hypoglycemia 
according to the corresponding BGLs. Epochs which 
correspond with BGL lower than 3.3mmol/l are defined as 
hypoglycemia. Conversely, they are labeled as non-
hypoglycemia. By using FFT, each epoch is transformed into 
the frequency domain which results in the power 
spectrum ( )iP f , with frequency resolution of 0.2 Hz. The 

power spectrum is then subdivided into 3 frequency bands: 
theta (�: 4-8Hz), alpha (.: 8-13 Hz) and beta (�: 13-30Hz). 
From the power spectrum of each frequency band, two EEG 
features including power level and centroid frequency are 
extracted. Details about processing signals and extracting 
EEG parameters were presented in previous papers [8, 12]. 

For comparison and classification purposes, two sets of 
data are extracted. The hypoglycemia set includes 188 data 
points; the non-hypoglycemia set includes 240 data points. 
Each final data point in each set is estimated as the average of 
two consecutive non-overlapping points. Statistical analysis 
is applied to compare and determine the significance of 
differences in EEG features between the two data sets. 

C. Classification 

Considering the final aim of developing a real-time 
system which requires reducing the computational cost, in 
our study, a feed-forward three-layer neural network is 
developed as a classification unit. The structure of the neural 
network is shown in Fig. 1. The input layer includes features 
extracted from EEG signals. The output layer consists of one 
output node which indicates the state of hypoglycemia or 

non-hypoglycemia. The desired output is set at 1 in case of 
hypoglycemia and -1 in the other case. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Neural network structure 

  From Fig.1, the input-output relationship of the 
developed neural network can be written as follows: 

             � �1 2
1 1

S R

i ij j i

i j

y v tansig w x b b
  

ª º
 � �« »

« »¬ ¼
¦ ¦               (1)  

where , , ,..., ; , ,...,ijw i 1 2 S j 1 2 R   is the weight of the link 

between i-th hidden node and the j-th input; iv  is the weight 

of the link between i-th hidden node and the output; b1i ,b2 are 
the biases for the input layer and hidden layer respectively; S 
is the number of hidden nodes; R is the number of inputs; 
tansig  is the hyperbolic tangent sigmoid transfer function of 

the hidden layer. 

In developing neural network, training algorithm plays 
the most important role in order to achieve a desired 
classification performance. In this paper, we explore a 2-step 
training process, which combines advantages of GA and LM. 
It is noted that the error function used for training is defined 
as the mean squared error (mse) of the output and its 
corresponding target. The number of hidden nodes is selected 
as the one which gives the best classification performances 
by the trials and errors method.  

GA is used to evolve neural network parameters by 
searching over the whole domain and direct the training 
process to the global optimal region. First, a population of 
chromosomes or individuals is initialized. Each chromosome 
is expressed by [ ]ij i 1i 2w v b b . Thus, the length of 

chromosome is equal to the number of neural network 
parameters. During the evolution, each chromosome is 
evaluated by a fitness function which is defined as follows: 

                     
1

( )
1

f chromosome
mse

 
�

                      (3) 

At each iteration (or generation) of the training process, the 
population is updated through a process of selection, 
crossover and mutation. The selection chooses some 
chromosomes out of the population for reproduction based on 
fitness values of each chromosome in the population. The 
selected chromosomes undergo two genetic operators of 
crossover and mutation. Basically, the crossover operation 
helps combine information while the mutation operation 
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helps change characteristics of two selected chromosomes to 
generate offspring. The offspring after that are evaluated by 
the fitness function to replace the worst chromosomes in the 
old population to generate a new population. This process is 
repeated until one of terminating conditions is met. The best 
chromosome in the final population will be employed as the 
initial neural network parameters for the next step of local 
searching by the LM algorithm.  

To overcome GA drawbacks of inefficient fine tuning and 
slow convergent rate, LM algorithm is implemented on the 
parameters sets obtained by GA. In brief, the LM algorithm 
estimates the second directional derivative of the 
performance function (mse function), in order to ensure the 
training process direct to a local optimal. To avoid 
overtraining which may cause bad generalization, the cost 
function on a validation set is also monitored during the 
training process. When the validation error keeps increasing 
for a given number of iterations, the training is stopped. The 
parameters at that stopped iteration will be used as final 
neural network weights and biases.  

After determining the final parameters for the neural 
network, a Receiver Operating Characteristic (ROC) curve 
will be plotted for the training set. By definition, the ROC 
curve presents the tradeoff between the true positive rate 
versus the false positive rate (equivalently, sensitivity versus 
1–specificity) for different thresholds of the classifier output. 
We utilize this characteristic to find the neural network 
output threshold that can improve the classification 
performance. It is noted that in the application of 
hypoglycemia detection, the sensitivity, which represents the 
rate of correctly classifying hypoglycemia episodes, is more 
important than the specificity. Therefore, based on the ROC 
curve, a criterion for output threshold is set at the point 
producing classification sensitivity of 80%. This procedure 
leads to a desired sensitivity and a relatively low but 
reasonable specificity. Details about the definition of 
sensitivity and specificity in our application can be found in 
[12]. The area under the ROC curve (AuC) is also estimated 
as a measure of classification performance. It is noted that the 
higher the AuC produces the better the classification.  

 

III. RESULTS 

The actual BGL profiles from five T1DM patients which 
were collected during the study are shown in Fig. 2. The 
BGL threshold to distinguish between hypoglycemia and 
non-hypoglycemia is set at 3.3 mmol/l. 

 

 

 

 

 

 

 

 

Statistical analysis yields significant changes in the 
centroid theta frequency and centroid alpha frequency. Under 
hypoglycemia conditions, the decrease in centroid alpha 
frequency is the most significant and consistent feature (p < 
0.0001 at all 4 channels). The results also indicate a slight 
increase in centroid theta frequency (p < 0.05). The data from 
5 patients show no significant change in the power level of 
all 3 frequency bands, as well as in the centroid beta 
frequency. The study shows that there is no significant 
difference in responses of EEG channels in the same brain 
areas (i.e. O1 and O2 in the occipital lobe; C3 and C4 in the 
central lobe). Therefore, in this paper, we use EEG data from 
only two channels C3 and O2, which are in two different 
sides and areas of the brain. Finally, centroid theta frequency 
and centroid alpha frequency from two channels C3 and O2 
are employed as inputs for classification. 

A neural network is developed with 4 input nodes (2 
features x 2 channels), S hidden nodes and 1 output nodes. S 
is varied from 1 to 16 to select the one that gives the best 
performance. As a result, it's recognized that for our 
application with 4 input nodes and 1 output node, S = 9 
yields the best classification results. The following results are 
corresponding with a neural network of 9 hidden nodes. 

For GA training, the overall data set is separated into a 
training set and a testing set. The training set is formed from 
the data of 3 patients, named patient A, B and C. This set 
consists of 284 data points which includes 112 points of 
hypoglycemia. The testing set is formed from data of 2 
patients, named patient D and E. This set consists of 144 data 
points which include 76 points of hypoglycemia. For LM 
training, in order to implement early stopping, the above 
training set is subdivided into an LM-training set and a 
validation set with a ratio of 3:1.  

To implement GA-based neural network training, the 
following parameters and operators are implemented: 
x Selection method: Normalized Geometric Ranking 
x Crossover operator: Blend-. crossover 
x Mutation operator: Non-uniform mutation 
x Chromosome length: 55 
x Maximum number of generations: 2000 
x Population size: 50 
x Parameter range: ij i 1i 23 w v b b 3� d d  

The classification results are presented in Table I and II. 
For comparison, three different training strategies are 
implemented, including LM, GA and combination of GA and 
LM (GA+LM). Based on the ROC curve of each case, the 
corresponding AuC and output threshold to distinguish 
between hypoglycemia and non-hypoglycemia are selected. 
The reported results are the mean and best performance of 20 
run times. The best results in Table II showed that by 
combining GA and LM algorithms to train neural network, 
classification results are enhanced markedly up to 75% 
sensitivity and 60% specificity. The LM algorithm produces 
comparable best classification results with the GA+LM 
algorithm, and better than the GA algorithm. However, the 
mean results in Table I demonstrate the positives as well as 
drawbacks of each algorithm. The LM algorithm produces 
the worst mean classification performance due to the Fig. 2. Actual blood glucose level profiles in 5 T1DM adolescents 
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inherence of trapping in local optimal. The GA algorithm 
produces consistent results in all running times which can be 
explained by the ability of directing the optimization process 
to the region of optimal solution. Taking this advantage of 
the GA algorithm, combined with the fine tuning capability 
of the LM algorithm, the GA+LM algorithm produces better 
classification results compared to the other two algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 

In this paper, a strategy of combining GA and LM to train 
neural network is demonstrated with the aim of improving 
the classification performance for the hypoglycemia detecting 
algorithm. Four EEG parameters from two non-invasive EEG 
channels C3 and O2 are used as inputs for a neural network 
classification unit. By utilizing the global search ability of 
GA and the local search ability of LM in training neural 
network, it is shown that classification results can be 
enhanced remarkably up to 80% sensitivity and 61% 
specificity on the training set, and 75% sensitivity and 60% 
specificity on the testing set.  Based on achieved results, 
more advanced algorithms will be investigated in future 
research to improve the study’s performance.  

One of the limitations of this current study is the shortage 
of data. The data set from five participated patients is 
sufficient to establish that hypoglycemia induces changes in 
EEG signals which can be detected by using neural network. 

However, in order to apply these results to develop a 
hypoglycemia detecting system that can perform in real 
clinical environments, other studies with more participants 
need to be implemented in future. Furthermore, it should be 
noted that this is a glucose clamp study, which is not 
spontaneous hypoglycemia. In future work, a natural 
hypoglycemia study would be carried out to explore the 
difference in EEG responses to glucose-induced 
hypoglycemia and spontaneous hypoglycemia as well as to 
validate the performance of the developed algorithm. 

With the proposed methodology, we are continuing to 
pursue our final purpose of developing the real-time system 
that can efficiently and continuously monitor patients’ 
conditions and alert them and their carers when 
hypoglycemia is detected nocturnally during sleep. 
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TABLE II.    BEST CLASSIFICATION RESULTS 

Training 
method 

AuC 
Training Testing 

Sen Spe Sen Spe 

LM 0.75 80% 53% 71% 54% 

GA 0.74 80% 42% 73% 41% 

GA+LM 0.82 80% 61% 75% 60% 

 Sen: sensitivity ; Spe: specificity  

TABLE I.    MEAN CLASSIFICATION RESULTS 

Training 
method 

AuC 
Training Testing 

Sen Spe Sen Spe 

LM 0.73 80% 52% 67% 42% 

GA 0.70 80% 37% 83% 40% 

GA+LM 0.79 80% 57% 74% 52% 

 Sen: sensitivity ; Spe: specificity  

Fig. 3. ROC curve  
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