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Abstract— Purpose. A novel real-time cardiorespiratory co-
herence (CRC) algorithm has been developed to monitor noci-
ception during general anesthesia. CRC uses custom designed
filters to track and analyze the respiratory sinus arrhythmia
(RSA) as it moves in time and frequency. CRC is a form of
sensor fusion between heart rate and respiration, estimating the
strength of linear coupling between the two signals. The aim of
this study was to estimate the effect of changes in respiration
rate (RR) and peak airway pressure (PPaw) on CRC. The
response of CRC was compared to a prior offline wavelet-based
algorithm (WTCRC) as well as traditional univariate heart rate
variability (HRV) measures. A nociception index was created
for each algorithm, ranging from 0 (no nociception) to 100
(strong nociception).

Methods. Following ethics approval and informed consent,
data were collected from 48 children receiving general anesthe-
sia during dental surgery. The times of change in RR and PPaw
events were noted in real-time. A total of 43 RR and 35 PPaw
change events were analyzed post hoc in pseudo real-time. The
nociception index averages were compared between a baseline
period and a response period around each event. A Wilcoxon
rank-sum test was used to compare changes.

Results. The change in RR changed the CRC nociception
index by an average of -2.2 [95% CI from -10 to 4.7] (P > 0.3),
and the change in PPaw changed the CRC nociception index
by an average of 5.4 [-1.0 to 11] (P > 0.1). The changes were
smaller than those of many traditional HRV measures.

Conclusions. Real-time CRC was blind to the changes in
respiration, and was less sensitive than many of the traditional
HRV measures. A nociception index based on CRC can thus
function across a wider range of respiratory conditions than can
many traditional univariate HRV measures. The real-time CRC
algorithm shows promise for monitoring nociception during
general anesthesia.

I. INTRODUCTION
Anesthesiology includes the practice of autonomic

medicine. Noxious stimuli during surgery cause the auto-
nomic nervous system (ANS) to invoke a stress response,
increasing sympathetic tone and decreasing parasympathetic
tone [1]. An excessive and prolonged sympathetic response
increases the risk of suffering from peri-operative complica-
tions, delays recovery, and contributes to postoperative mor-
bidity [2]. Anesthesiologists must control the stress response
(nociception) by administering analgesic drugs (antinocicep-
tion).
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The ANS is currently not routinely monitored. Anesthe-
siologists are guided by observation and interpretation of
trends in patients’ vital signs, including heart rate (HR) and
blood pressure. These are only indirect and insensitive mea-
sures of nociception or the ANS, and are not well correlated
with nociception. Confounding factors such as pre-existing
medical conditions and inter-patient variability challenge the
anesthesiologist to administer the correct amount of drug to
suppress nociception in each individual. An automated no-
ciception monitor that directly assesses ANS activity would
be very useful for general anesthesia, providing anesthesiol-
ogists with feedback about the adequacy of antinociception.
Heart rate variability (HRV) shows promise as a noninvasive
nociception monitor [3], [4], [5].

HRV reflects the autonomic state, and is typically mea-
sured in the time and frequency domains. Frequency domain
measures traditionally rely on fixed frequency bands, assum-
ing that the respiration rate (RR) falls between 0.15 - 0.4 Hz
(9 - 24 breaths/min). When the RR falls outside of this range,
traditional HRV measures may fail. We aim to eliminate this
assumption in our work.

We have previously developed cardiorespiratory coherence
(CRC) algorithms for monitoring nociception. Initially, a
wavelet transform CRC (WTCRC) algorithm was developed
for offline analysis using the continuous wavelet transform.
Then a real-time CRC algorithm was developed for online
analysis using custom-designed filters to minimize real-time
delay. We have previously shown that the CRC correlates to
a traditional frequency domain HRV measure [6], that it can
detect patient movement (a sign of strong nociception) [7],
and that it responds to nociceptive and antinociceptive stimuli
[8], [9]. However, further validation studies are required.

In this work, we will measure the response of CRC to
changes in RR and peak airway pressure (PPaw), and com-
pare its responses to those of traditional time and frequency
domain HRV measures. A nociception monitor should be
blind to changes in respiration.

II. METHODS

A. Nociception Indices

CRC is a measure of the linear coupling between HR and
respiration. It is a cross correlation between these two signals
in the time and frequency domains. CRC analyzes the HR
and respiration signals in time/frequency, correlates them,
and smooths the results.

An analyzing filter tracks the respiratory sinus arrhythmia
(RSA) as it moves across the time/frequency plane. RSA is a
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healthy heart arrhythmia driven by respiration, that has been
shown to reflect the autonomic balance [10]. The analyzing
filter is a complex Morlet function with variable center
frequency and bandwidth. We use the respiratory frequency
(fr) as the filter’s center frequency. This is where the RSA
power exists in the frequency domain. As fr varies over
time, the filter’s center frequency and bandwidth change to
track the RSA. The filter measures the HR power (denoted
PHR
t (fr)), respiration power (PResp

t (fr)), and cross power
(PX

t (fr)).
The coherence estimator is calculated as:

Ĉ2
t (fr) =

∣∣〈PX
t (fr)

〉∣∣2〈∣∣PHR
t (fr)

∣∣〉 〈∣∣∣PResp
t (fr)

∣∣∣〉 , (1)

where the angled brackets denote a smoothing operator using
a causal Gaussian smoothing filter. The CRC nociception
index is then calculated as:

CRC = 100 x (1− Ĉ2). (2)

The result is a series of real-time CRC values at the time-
varying fr. CRC can range from 0 (perfect coherence, no
nociception) to 100 (no coherence, strong nociception).

Traditional time and frequency domain HRV measures
were calculated for comparison. The low frequency (LF)
power, high frequency (HF) power, normalized LF and HF
(LFnu, HFnu), LF/HF ratio, standard deviation of normal-to-
normal beats (SDNN), and root mean square of successive
differences (RMSSD) were tested. Nociception indices were
created for these measures by mapping them to a range of
[0 100] using tuning values derived from our dataset. The
procedure is fully described in [11].

B. Clinical Protocol & Data Collection

Following ethics approval and informed consent, data were
collected from healthy pediatric patients receiving general
anesthesia during dental surgery. Subjects were aged 3-6
years, had ASA physical status I or II (i.e. healthy patients),
were free of cardiorespiratory disease, and were not taking
medications that alter autonomic function. Subjects were
anesthetized with propofol and remifentanil.

The RR was changed from 8 to 16 breaths/min and the
PPaw was changed from 15 to 12 cmH2O once during
each case. These were two separate events, occurring at two
different times. The level of nociception is unknown and
variable both before and after the change in RR and PPaw
(since the changes occurred during surgery). The changes
in RR and PPaw themselves are neither nociceptive nor
antinociceptive, so we expect that the level of nociception
should be, on average, unchanged.

Physiological data were recorded throughout each case.
The electrocardiogram (ECG), capnometry (CO2), and air-
way pressure (Paw) signals, as well as the respiratory fre-
quency (fr) (derived from capnometry) trend, were recorded
using Datex/Ohmeda S/5 Collect software (GE Healthcare,
Helsinki, Finland). The ECG was recorded at 300 Hz, CO2

and Paw at 25 Hz, and fr at 0.1 Hz. A research assistant

annotated the data in real-time with markers identifying the
times of change in RR and PPaw events.

C. Data Analysis

The study sample size was based on the precision of a
receiver operating characteristic (ROC) curve that has not
been utilized in this analysis. The data analyzed in this study
have been included in previous publications [6], [7], [8], [9].

Data were manually inspected and selected for post hoc
analysis in Matlab (The Mathworks, Natick, MA). Case
annotations were searched to find all recorded change in
RR and PPaw events. Events with significant ECG or CO2

artifacts were excluded from analysis.
HR and CO2 signals were prepared for analysis. Data seg-

ments were extracted around each event. A baseline period
consisted of a 60 s analysis window ending 60 s before
the event. A response period consisted of a 60 s analysis
window starting 60 s after the event. This allowed for a 60 s
buffer before and after the event, to ensure the analysis was
not corrupted by cross contamination. The analysis windows
were padded with 120 s of data on each end, to ensure
the analysis was not corrupted by edge artifacts. ECG R-
peaks were detected using a filter bank algorithm [12], and
errors were manually corrected to create a gold standard beat
series. Each beat series was converted to a HR signal and
resampled onto an evenly-spaced 4 Hz grid using Berger’s
algorithm [13]. The CO2 signal was downsampled to 4 Hz
using standard low pass filtering and decimation. The fr was
upsampled to 4 Hz using a repeater.

The change in the nociception indices was calculated in
all events in pseudo real-time. The HR, CO2, and fr signals
were analyzed sample-by-sample to simulate a real-time
environment in each data segment. The resulting nociception
index values were averaged over the baseline and response
periods. The change in average value from the baseline to
the response period was calculated. Finally, changes were
averaged separately over all change in RR and PPaw events.

A 95% confidence interval was estimated about the mean
changes, using a corrected percentile bootstrapping method
(the bootci function in Matlab). A Wilcoxon rank-sum test
was applied to estimate the statistical significance of the
mean changes. A Bonferroni correction was applied to ac-
count for the multiple significance tests performed. Nine tests
were performed in each experiment, leading to a corrected
significance level of 0.05/9 = 0.0056. Responses below this
level were considered statistically significant.

III. RESULTS

The 48 subjects (22 male, 26 female) had a median (IQR
[full range]) age of 3.7 (0.68 [3.0 - 6.8]) years, weight of 16
(3.0 [12 - 24]) kg, and height of 101 (6.5 [92 - 114]) cm.

A total of 43 change in RR events were analyzed. One was
excluded due to significant ECG artifacts, where the HR was
impossible to discern. Two were excluded due to significant
artifacts in the CO2 signal. One was missing due to a failure
of the data recording equipment. One was missing because
the case ended early.
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Measure Mean Mean 95 % CI P-value
Baseline Change

CRC 34 -2.2 -10 to 4.7 > 0.3
WTCRC 14 0.28 -5.2 to 5.3 > 0.1
LF 59 -9.2 -13 to -5.6 < 0.008
HF 55 -8.2 -11 to -5.5 > 0.05
LFnu 74 -29 -37 to -22 < 0.000004*
HFnu 82 -26 -33 to -19 < 0.000002*
LF/HF 67 -16 -20 to -12 < 0.000002*
SDNN 18 1.4 -0.74 to 3.8 > 0.4
RMSSD 19 5.1 1.8 to 8.7 > 0.3

TABLE I
RESPONSE TO A CHANGE IN RR FROM 8 TO 16 BREATHS/MIN.

ASTERISKS (*) DENOTE STATISTICALLY SIGNIFICANT RESULTS WITH A

BONFERRONI CORRECTION.

Measure Mean Mean 95 % CI P-value
Baseline Change

CRC 32 5.4 -1.0 to 11 > 0.1
WTCRC 16 4.1 -0.95 to 9.1 > 0.05
LF 59 -2.8 -7.7 to 1.4 > 0.3
HF 37 5.3 2.8 to 8.4 > 0.1
LFnu 43 4.1 -3.6 to 12 > 0.2
HFnu 54 5.2 -1.2 to 12 > 0.1
LF/HF 51 2.6 -1.5 to 6.4 > 0.1
SDNN 27 -5.9 -11 to -2.1 > 0.2
RMSSD 33 -7.2 -14 to -2.7 > 0.2

TABLE II
RESPONSE TO A CHANGE IN PPAW FROM 15 TO 12 CMH2O. ASTERISKS

(*) DENOTE STATISTICALLY SIGNIFICANT RESULTS WITH A

BONFERRONI CORRECTION.

A total of 35 change in PPaw events were analyzed. Two
were excluded due to significant ECG artifacts, where the HR
was impossible to discern. One was missing due to a failure
of the data recording equipment. Four were missing because
either the start or end PPaw was clinically unachievable. Six
were missing because the case ended early.

The CRC nociception index did not change significantly in
response to a change in RR, changing by an average of -2.2
[95% CI from -10 to 4.7] (P > 0.3). It also did not change
significantly in response to a change in PPaw, changing by
an average of 5.4 [-1.0 to 11] (P > 0.1). Real-time CRC was
less sensitive to the stimuli than were many of the traditional
HRV measures. Full results in Tables I, II, and Figs. 1, 2, 3.

IV. DISCUSSION & CONCLUSION

The results of this study demonstrate that a nociception
index based on real-time CRC is blind to changes in RR and
PPaw. CRC was less sensitive to these stimuli than some
traditional time and frequency domain HRV measures. A
nociception index should be blind to these changes, since
they are not nociceptive.

CRC is unique in combining information from the HR
and respiration signals, operating as a form of sensor fusion.
CRC makes no assumption on the location of the RSA,
completely eliminating the concept of fixed frequency bands.
The algorithm tracks the RSA as it moves in time and
frequency using the respiration frequency calculated from
the respiration signal (e.g. CO2). CRC has information on the

exact location of the RSA. We have previously shown that
CRC continues to function when the respiration frequency
is low (< 0.15 Hz), while the LF/HF ratio fails [6]. This
limitation extends beyond the LF/HF ratio.

Reliance on fixed frequency band limits caused the tra-
ditional frequency domain HRV measures to respond to the
change in RR. For each change in RR event, the baseline
RR was 8 breaths/min (0.133 Hz). In this condition, the
RSA was not present in the expected HF band, but was
instead mostly in the LF band. This condition distorts the
frequency domain measures, leading to an amplified LF,
LFnu, and LF/HF ratio, and an attenuated HF and HFnu.
The corresponding nociception indices are artificially high,
and not true reflections of the autonomic state. This condition
led to statistically significant responses in LFnu, HFnu, and
LF/HF. In addition, responses in the LF and HF were nearly
statistically significant. Respiration in the LF band is not just
a theoretical condition. Slow respiration is often used during
general anesthesia. Fixed frequency bands are therefore a
significant limitation.

The PhysioDoloris Analgesia Nociception Index (ANI)
(MetroDoloris SAS, Loos, France), another HRV-based no-
ciception monitor, may suffer the same limitation. The ANI
measures changes in the magnitude of RSA. The algorithm
applies a wavelet bandpass filter to the HR signal to isolate
the RSA, then calculates the area under the RSA curve
(AUC). The ANI is calculated as a weighted fraction of the
smallest short-term AUC to longer-term AUC. The design
of the wavelet filters assumes that the RSA will exist in
the frequency range of 0.167 - 0.667 Hz [4]. The low RR
condition in our experiment exceeds the filter design of the
ANI. Another nociception monitor, the Surgical Stress Index
(SSI) (GE Healthcare, Helsinki, Finland), may also suffer
this limitation. It is based partly on the photoplethysmogram
amplitude, which may be affected by respiration [5]. How-
ever, we have not shown any such effect in our experiments.

While our results show that CRC is not significantly
affected by a change in RR, the experiment was only
performed on the range of 8 - 16 breaths/min. It is possible
that there is a small effect that may only become measurable
at greater changes in RR. Furthermore, while we have
shown that CRC can operate across a wider range than the
traditional frequency domain HRV measures, this range is
not unbounded. The respiration and HR can only couple
across a finite frequency range. If the patient breathes too
slowly or two quickly, the HR will be unable to couple to the
respiration and coherence will drop to zero (CRC nociception
index of 100). The exact lower and upper RR bounds are
unknown, and probably vary across the population. Age,
health, and individual physiology all likely contribute to
variation in RSA coupling bounds. These bounds could be
tested in the future, by ramping the RR under otherwise
steady state conditions and observing the resulting change
in CRC.

CRC may have responded to a change in PPaw, though the
response was too small to be statistically significant. While
the mean change was small (5.4), the nociception index

5362



50 100 150 200 250 300 350 400 450
60

70

80

H
e
a
rt

 R
a
te

(b
p
m

)

50 100 150 200 250 300 350 400 450
0

2

4

R
e
s
p
ir
a
ti
o
n

(%
 C

O
2
)

50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

C
R

C
N

o
c
ic

e
p
ti
o
n
 I
n
d
e
x

Time (s)

240 s  change RR from 8 to 16 breaths/min

Fig. 1. Example change in RR event, analyzed with real-time CRC. Vertical lines denote clinical events. The yellow vertical bands (both left and right)
represent the baseline and response periods, respectively. The nociception index is approximately the same in the period preceding the change in RR as it is
following it. The transient increase in the nociception index immediately following the change in RR is caused by a delay in the analyzing filter tracking.
For this brief period, the real-time CRC algorithm is looking for the RSA at the wrong frequency. The missing CRC data at the beginning of the window
corresponds to the combined length of the analyzing and smoothing filters. This is not directly related to the real-time delay.
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Fig. 2. Boxplots of responses to a change in RR for all measures. The boxes represent the index levels before (left) and after (right) the change in RR.
The central red bar represents the median (second quartile). The box edges are the first and third quartiles. The whiskers extend 1.5x the interquartile range
(IQR) beyond the box edges. Points beyond the whiskers are drawn as red plus symbols (+), and may be considered outliers. Such possible outliers were
not excluded from analysis.
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Fig. 3. Boxplots of responses to a change in PPaw for all measures. The boxes represent the index levels before (left) and after (right) the change in
PPaw. The central red bar represents the median (second quartile). The box edges are the first and third quartiles. The whiskers extend 1.5x the interquartile
range (IQR) beyond the box edges. Points beyond the whiskers are drawn as red plus symbols (+), and may be considered outliers. Such possible outliers
were not excluded from analysis.

increased in most of the events (26/35 or 74%). There is a
theoretical mechanism to explain this effect. The air pressure
in the lungs provides an external perturbation to the ANS.
The perturbation acts both directly (through stretch receptors
in the lungs) and indirectly (through changes in intrathoracic
pressure and thus baroreflex). The cyclic perturbation causes
corresponding oscillations in HR (i.e. RSA). When the PPaw
is decreased, the perturbation effect is likewise decreased.
In the extreme, when the PPaw drops to zero, there is no
perturbation, no RSA, and thus no coherence. Decreasing the
PPaw may actually decrease coherence, and thus increase the
CRC nociception index. This hypothesis could be tested in
the future, by decreasing the PPaw under otherwise steady
state conditions and observing the resulting change in CRC.

Future work will involve improving artifact handling. CRC
is sensitive to false or missed beats in the ECG, which are
manifested as strong discontinuities in the HR signal. HR
artifacts typically lead to a strong false increase in the CRC
nociception index. Artifacts in the respiration signal produce
a similar result. Robust artifact detection and rejection will
be essential for a nociception monitor in clinical practice.

CRC shows promise as a real-time monitor of nociception
during general anesthesia. CRC responds to both nociception
and antinociception, and operates over a wider range of
respiratory conditions than do many traditional HRV-based
measures. In the future, CRC could provide anesthesiologists
with feedback about the adequacy of analgesia in real time,
increasing patient safety during surgery.
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