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Abstract— Traditional automatic navigation methods for bio-
robots are constrained to configured environments and thus
can’t be applied to tasks in unknown environments. With
no consideration of bio-robot’s own innate living ability and
treating bio-robots in the same way as mechanical robots,
those methods neglect the intelligence behavior of animals. This
paper proposes a novel ratbot automatic navigation method
in unknown environments using only reward stimulation and
distance measurement. By utilizing rat’s habit of thigmotaxis
and its reward-seeking behavior, this method is able to incorpo-
rate rat’s intrinsic intelligence of obstacle avoidance and path
searching into navigation. Experiment results show that this
method works robustly and can successfully navigate the ratbot
to a target in the unknown environment. This work might put
a solid base for application of ratbots and also has significant
implication of automatic navigation for other bio-robots as well.

I. INTRODUCTION

Bio-robotics is a new research field which focuses on
exploiting animal’s locomotor ability and other unique ap-
titudes to serve human-beings through Brain Computer In-
terface (BCI) techniques. Electrical stimulation as control
commands delivered into sensory cortex directly is used to
manipulate animals to perform specified behaviors, from eas-
ily pressing a lever to finishing complex 3D terrain traversal.
There have been different animals developed into bio-robots,
such as rats [1], beetles [2], sharks [3], and geckos [4]. Bio-
robots have significant advantages over mechanical rivals
for their athletic agility, power supply, and concealability
[5]. Of all the superiorities, the most essential one is that
they possess great locomotive adaptability and cognitive
capability in different environments, which makes them ideal
tools for target searching in unknown environments.

However, the automatic navigation methods for bio-robots
in unknown environment is still a challenge that impedes
their practical applications. There are many traditional con-
trolling methods for mechanical robots in unknown or dy-
namic environment, including the heuristic searching such
as D* algorithm [6], behaviors based methods such as local
field potential algorithm [7] and machine learning method
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like fuzzy learning [8] or reinforcement learning [9]. Those
methods mainly focus on obstacle detection and avoidance.
Subject to the complexities of various environments, no
universal methods apply to arbitrary scenarios. In contrast,
animals, e.g., rodents, can readily avoid obstacles, explore
the surroundings and search for targets over different envi-
ronments. This ability of spatial recognition benefits from
animals’ intelligence evolved through millions of years. The
biological intelligence of animals would be the very solution
to the problem in navigation methods. In bio-robots naviga-
tion, the controlling algorithm should implant the assigned
destination into the animals’ willing as their desired target,
leaving the obstacles and collision avoidance to be handled
by the animals themselves.

Previous studies implement the automatic navigation of
bio-robots only in configured experimental maze [10][11]
instead of the real world scenario, with animal intelligence
totally ignored. Furthermore subject to the load capacity of
the animals, the complicated and heavy sensors cannot be
equipped on bio-robots’ bodies. Meanwhile the movement
of animals will cause these sensors to tremble drastically
which affects sensor precision. Therefore the sensory data
for automatic navigation in bio-robots should be carefully
examined. In this work, we employ the distance between the
bio-robot and the target as the only locomotion information
for navigation. This parameter requires few sensors and little
calculation to obtain. More importantly, the navigation based
on distance has practical significance. This distance can be
directly sensed by animals, reflected on their neural systems
and eventually be decoded from the brains directly through
BCI techniques. In future intelligence-hybrid bio-robots, the
distance will be interpreted from the brain and generates
controlling commands to guide bio-robot in navigation tasks
as a close-loop of BCI system.

In this paper, we proposed a novel ratbot (bio-robot
implemented by a living rat) automatic navigation method
in unknown environments with electrical reward stimulation
based on distance measurement. Our method focuses on
giving/depriving the reward when the ratbot walks toward-
s/away from target in navigation tasks, while leaving the
problems such as how to avoid obstacles and how to choose
a feasible route to ratbots themselves. The reward commands
are decided and sent by evaluating aforementioned distance
information. The results show that by taking advantage of the
animal’s biological intelligence, our method successfully im-
plements the automatic navigation for ratbot in an unknown
environmental maze with a simple controlling logic.
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II. METHODS

A. Ratbots

The electrical stimulation in Medial Forebrain Bundle
(MFB) cortex will generate intensive excitement for rodents.
In this way, we can make the rat act as a mobile robot in
navigation experiments. Due to the reward-seeking instinct,
the rat will keep walking forward for more rewards. We
have built an automatic navigation system for ratbot based
on electrical reward stimulation in previous work [12].

Rodents have excellent talents in environment exploration
to search for food and water. Besides, rats show special
behaviors such as preferring walking against vertical walls
which is referred to as thigmotaxis terminologically [13]. The
searching capability and roaming habit are the physiological
basis of our navigation method.

B. Automatic Navigation Method

1) Principle: The principle of our navigation method is
inspired by the classical BUG algorithm [14] in traditional
robotics. The basic idea of BUG is to guide robots to: 1)
advance along the line from start point to target point. 2)
circle around any obstacles in the way until it returns to the
original route. Combining the characteristics of ratbots and
the rules of BUG algorithm, we define two basic controlling
strategies in our navigation method: Open Control(OC) and
Tunnel Control(TC).

OC strategy regards the environment as an open field
where there is no obstacles blocking ratbot’s way. When the
distance information indicates that the ratbot is approaching
towards target, the reward electrical stimulation is given
immediately to induce it to move on, otherwise the reward is
deprived. The ratbot will realize the wrong behaviors when
rewards are cut off and try other routes based on its error-
and-trial learning ability. In this way, the ratbot is guided
towards the destination gradually as shown in Fig. 1(left).

However, when the ratbot walks into a dead end as in Fig.
1(right), OC strategy can’t work. No matter which direction
ratbot chooses to walk out of dead end, the distance gets
larger and ratbot will not get reward to move further. Our
method employs strategy TC to handle this ratbot trapped
situation. In TC, the reward is given continuously to induce
the ratbot to move regardless of whether it walks towards or
away from target. Due to the thigmotaxis characteristic, under
continuous reward stimulation, ratbot shall walk against the
boundaries and thus circles around the rims of obstacles.
Once the distance is less than the previous local minimal
value, the strategy is switched back to OC.

There are two key issues that our method focuses on.
Firstly, the ratbot trapped scenario should be detected by
the distance parameter real-timely. Secondly, during TC
controlling process, there are possibilities that the ratbot
chooses a wrong direction which is target-unreachable. Our
method should make the ratbot realize the error and try the
other direction.

Fig. 1. Automatic Navigation Strategies. 1) In OC, ratbot only gets reward
stimulation if it’s getting closer to target, whereas in TC, continuous reward
stimulation is given regardless of ratbot’s movement. 2) When the system
determines ratbot has walked out of dead end at point A or point B by
getting nearer to target compared with the minimum distance in the dead
end, the controlling strategy is switched back to OC. 3) The method judges
when to alter navigation strategy from OC to TC and vice-versa utilizing
only the distance to target.

2) Dead End Detection: In the dead end, ratbot will walk
back and forth and the distances recorded during the period
will swing much more frequently than normal. Feature point
detection is used to detect abnormal distance swing in our
navigation method. We account those points which are spike-
shaped in the distance diagram as feature points. Explicitly
Those satisfying

(Dcur −Dprior) ∗ (Dcur −Dnext) > 0

are classified as feature points. Among the formula, Dcur
stands for the current distance. Dprior and Dnext are the
chronologically prior and next distance respectively.

Dead end is detected in a time-window which correlates
to a distance record interval. The length of a time-window
is decided by interest distance gap which is a parameter
regarding to the depth of dead ends. When feature points in
the time-window exceeds a proper threshold, ratbot is defined
as trapped in a dead end.

3) Back Trace Restriction: As mentioned previously,
some dead ends only have one direction out. TC strategy
can’t navigate ratbot out if it heads into the wrong direction
in these dead ends. To cope with this situation, the back trace
range is restricted to a threshold. Whenever the difference
between current distance and minimum distance in a dead
end is more than the threshold, ratbot is temporarily believed
to have walked to the wrong direction and the reward
stimulation is deprived off to prevent ratbot from moving
further from target. Continuous reward is resumed when
ratbot falls into the back trace range threshold again and
the method then will try to navigate ratbot to the opposite
direction.

The back trace restriction threshold is not static but
dynamically increasing so as to adjust to the actual depth
of the current dead end. For each excess of back trace range
threshold, the threshold auto-increments exponentially as the
formula below:

Tnew = Told ∗ fN

Tnew and Told are the new and old threshold value respective-
ly. The incremental factor is noted as f . N is the number of
times that ratbot walks out of the threshold in a dead end. If a
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dead end is very large, TC shall restrict the back trace range
to the current threshold. Ratbot will make several attempts
to walk out of the dead end while the threshold increases to
the depth of dead ends. If ratbot walks back and forth for
too many trials and N exceeds a predefined value, we then
conclude that ratbot can never walk out of the dead end.

C. Controlling Algorithm

The controlling algorithm for automatic navigation is as
below.

Data: the distances between the ratbot and the target
Result: navigation SUCCESS or FAILURE
initialization;
while ratbot has not reached the target do

read distance;
if current controlling strategy is OC then

control ratbot with OC;
if ratbot is detected entering a dead end then

alter controlling strategy to TC;
end

end
if current controlling strategy is TC then

control ratbot with TC;
if ratbot is detected out of the dead end then

alter controlling strategy to OC;
end

end
if no time left or too many trials in a dead end then

return navigation FAILURE;
end

end
return navigation SUCCESS;

Algorithm 1: Controlling Algorithm

III. EXPERIMENTS AND RESULTS
A. Experiment Setting

We constructed an experimental environment with obsta-
cles using rectangle-shaped wood baffles. The baffles were
of a height of 20cm and could prevent ratbot from climbing
over. They were put into a restricted rectangle planar region
of 1.7m long and 1.4m wide, and were fixed at constant
locations during experiments. Details of the environment
formation can be found in Fig. 3. We also had a camera
overhead to capture the movement of ratbot. The camera
was solely used to obtain the distance of ratbot to target
with computer vision techniques and all the environment
information from the camera was not used for navigation.

In order to evaluate the navigation results, we initially
used manual control to set up evaluation standards. Different
trials were conducted in an open field or an environment with
obstacles, and the time consumption of each navigation trial
was recorded. For automatic navigation in the environment
with obstacles, the success threshold was set to twice the
average time consumption of manual navigation. The aver-
age time of manual navigation was 45.5s. So if the time

Fig. 2. Dead End Detect Process. The bold line segments in the diagram
show that our algorithm uses the distance in this interval and detected that
ratbot had entered a dead end.

consumption was more than 91.0s, the automatic navigation
trial was judged as a failure trial.

B. Navigation Results

We firstly did experiments to test the efficiency of dead
end detection. Three independent trials were conducted with
manual control following the rules of our new navigation
method. Offline analysis of the video showed that feature
point detection could correctly detect dead ends in real time.
The dead end detection process is presented on Fig. 2.

The detailed results of the average time consumption
are listed in table I. According to our navigation success
standard, for 20 trials in our experiments, the success rate
was 85%.

TABLE I
AVERAGE TIME CONSUMPTION OF NAVIGATION

Environment No obstacle With Obstacle
Method Manual Auto Manual Manual & PP* Auto

Time 14.3 18.5 45.5 23.9 73.7

*PP: Path Planning which is not in our method but added for comparison.

The typical locomotion trajectory of a ratbot in environ-
ment with obstacles is presented in Fig. 3. In the graph,
the red dots on the curve indicate that the ratbot is given
a reward stimulation under OC strategy, while the blue
rectangle means that the ratbot is given a reward stimulation
under TC strategy. The automatic navigation process starts
when the ratbot walks out of the initiate region at point B.
Both of point A and point C represent that the ratbot has
been detected entering a dead end zone. When the ratbot
passes point D, the distance to target becomes less than
the minimal distance recorded in the dead end and thus
controlling strategy is switched back to OC. Ratbot makes a
sharp turn at point E because no reward stimulation is given.

In our experiment, there was one dead end having only
one direction out and the other direction led ratbot back to
its start place. The navigation process out of the dead end is
shown in Fig. 4.

We observed that occasional false dead end detection
occurred during automatic navigation. When a false dead
end detection occurs, if ratbot is heading closer to target, then
immediately the controlling strategy is switched back to OC.
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Fig. 4. Back Trace Restriction. The current back trace threshold is drawn as the red dotted line as in C and E. The ratbot is controlled under OC strategy
in A. In B, it is detected to be trapped in a dead end and thus controlling strategy is switched to TC. The ratbot walks out of the threshold in C and reward
is deprived off. The ratbot realizes that it has walked to the wrong direction and makes a turn in D. The threshold is incremented as in E, then the ratbot
is navigated out of the dead end in F and navigation strategy is switched back to OC.

Fig. 3. Ratbot Navigation Trajectory. This graph represents the actual
environment setting and the trajectory of the ratbot. The palisade shaped
line stands for the barriers we arranged and the irregular curve in the middle
is the ratbot’s walking path. The start point is at the upperleft corner, noted
as circle S, and the target is at the lowerright corner, noted as circle T.

And if ratbot is heading away from target, then according to
the rules of our method, continuous reward stimulation is
given to drive ratbot out of the false dead end. When the
distance has exceeded the back trace range threshold, the
reward stimulation is deprived. Ratbot shall turn around to
get reward and move towards target again. So in a tolerable
time span, a small amount of false dead end detection won’t
have much influence on the final navigation results.

IV. CONCLUSION AND FUTURE WORK

This paper has proposed a novel ratbot automatic naviga-
tion method in unknown environments. By taking ratbot’s
intrinsic ability of obstacle avoidance and path searching
into consideration, this method integrates the intelligent
behavior of ratbot and builds up a feasible solution for ratbot
navigation in unknown environment.

In real navigation tasks like hazardous environment
searching and rescuing, a lot of unexpected surroundings
and objects will emerge. The influence they will have on
the navigation of ratbot and ways to avoid them should be
addressed before deploying ratbot into specific tasks. More
work including getting the distance information from carried

sensors or directly from the neural systems of ratbots needs
to be done in the upcoming research.
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