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Abstract² This paper presents an improved noise 

classification in environment-adaptive speech processing 

pipelines of cochlear implants. This improvement is achieved 

by using a dual-microphone and by using a computationally 

efficient feature-level combination approach to achieve real-

time operation. A new measure named Suppression Advantage 

is also defined in order to quantify the noise suppression 

improvement of an entire pipeline due to noise classification. 

The noise classification and suppression improvement results 

are presented for four commonly encountered noise 

environments.  

I. INTRODUCTION 

It is shown that speech understanding of patients who 
have been fitted with Cochlear Implants (CIs) decreases 
significantly in noisy conditions [1, 2]. Some studies, e.g. [3, 
4], have used speech enhancement algorithms in speech 
processing pipelines of CIs to address this issue. In [5-7], 
environment-adaptive solutions have been developed to 
automatically identify noise classes and optimally tune noise 
suppression parameters in real-time. The overall performance 
of these solutions depends not only on the noise suppression 
component, but also on the effectiveness of noise 
classification. 

In this work, we present an improvement of the noise 
classification component of the environment-adaptive speech 
processing pipelines that have been previously developed in 
[5-7]. This improvement is achieved by using signals from a 
dual-microphone instead of a single microphone. Our 
solution is designed in such a way that the computational 
efficiency aspect of the previously developed pipelines is 
maintained allowing their real-time operation. In addition, to 
quantitatively evaluate the overall performance of an entire 
pipeline, a new measure is defined in this paper. 

Section II provides an overview of the previously 
developed environment-adaptive pipelines of CIs. The dual-
microphone classification improvement is then presented in 
section III. Section IV includes a new quality measure named 
Suppression Advantage followed by the results in section V. 
Finally, the conclusion is stated in section VI. 

II. ENVIRONMENT-ADAPTIVE PIPELINE OF CIS 

As shown in Fig. 1, the basic components of our 
previously developed environment-adaptive noise 
suppression pipelines [5-7] includes two parallel paths 
running in real-time. The main path consists of a 
parameterized noise suppression component utilizing a 
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speech decomposition method involving recursive wavelet 
packet transform [8]. Each parameter set is optimized using 
statistical data-driven methods [9±11] for a specific noise 
type in an offline manner and then is stored and used for 
noise suppression in a real-time manner.  

Furthermore, the parallel path consists of an automatic 
noise detection and classification component that controls the 
optimal parameterization of the main path. It consists of a 
Voice Activity Detector (VAD) to identify low-energy 
speech frames and a noise classification module which 
activates when noise-only frames are identified by the VAD. 
This path loads the optimal noise suppression parameters into 
the main path based on the detected noise class. A Gaussian 
Mixture Model (GMM) classifier using a 26-dimensional 
feature vector is used to classify the noise. Also, a majority 
voting of classification decisions is utilized to increase 
reliability of the noise detection. 

III. NOISE CLASSIFICATION USING DUAL-MICROPHONE  

In this section, we consider the use of a dual-microphone 
where two input signals are captured. A comparison of two 
approaches when using a dual-microphone is made, leading 
to the selection of the more computationally and memory 
efficient approach. 

The first approach consists of combining decisions given 
by two classifiers running in parallel each classifying one 
signal source independently, then using a decision 
combination module to generate a combined decision 
outcome. The second approach consists of fusing the feature 
information extracted from each signal and then using only 
one classifier.  

Decision-level combination can be implemented by 
training a right and a left GMM classifier independently and 
combining their decisions at the majority voting step. This 
requires training two independent GMM classifiers and 
having enough memory space to store two sets of GMM 
parameters.  Feature-level combination can be implemented 
by appending the feature vectors to form a single feature 
vector with twice the dimension. This approach would only 
require the use of one GMM classifier. 

Table I compares the decision-level and feature-level 
classification approaches when using a dual-microphone in 
terms of memory efficiency, computational efficiency, and 
offline training workload. As the total number of GMM 
parameters for classifying a (26+26)-dimensional vector is 
less than that of 2 sets of GMM parameters for classifying a 
26-dimensional vector, the feature-level combination requires 
less memory. The table also shows that the feature-level 
approach outperforms the decision-level approach in terms of
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Figure I. Cochlear implant speech processing pipeline implemented in real-time [5, 7] 

the computation or speed aspect. Another advantage is that 

the offline training is performed for only one classifier when 
using the feature-level approach. 

the true class is C1 with 

N 

IIt =1. 
i=I 

(2) Therefore, due to the memory and computational 
efficiency advantages of the feature-level approach, we have 

adopted this approach in order to improve the classification 
performance of the environment-adaptive pipelines of Cls in 

a real-time manner. 

Also, let Q = [Qi ]NxN be the quality matrix associated with 

the noise suppression component, where 

IV. SUPPRESSION ADVANTAGE MEASURE 

A. Definitions 

Let P = [ Jt ]NxN be the confusion matrix associated 

with the above classifier, where N is the total number of 

environment classes and let 

(1) 

be the probability that the classifier decides class Ci while 

TABLE I. COMPARISON OF FEATURE-LEVEL AND DECISION-LEVEL 

CLASSIFICATION APPROACHES 

Comparisons/Approaches 

Memory Efficiency 

Computational Efficiency 

Offline Training 

Workload 

Feature-Level 

Combination 

I SetofGMM 

parameters for I 

input of52-

dimensional 

feature vector 

IGMM 

classification+ I 

majority voting 

I GMM training 

Decision-Level 

Combination 

2 SetsofGMM 

parameters for 2 

inputs of 26-

dimensional 

feature vectors 

2GMM 

classifications+ 2 

majority voting+ 

I decision 

combination 

2 GMM training 

(3) 

denotes the quality measure achieved when using the 

suppression parameters associated with class Ci while the 

true class is C1 . 

Based on the above definitions, the expected quality for 
each class can be defined as follows: 

N 

Qi~ LP;iQi' VJ= I, ... N. (4) 

i=I 

By writing Q and P as these matrices 

(5) 

(6) 

we can write 

(7) 

The overall expected quality of the pipeline can then be 

stated as 

N 

Q = LPa(Cj).Qj' (8) 

}=I 

where Pa ( C
1

) denotes the prior probability of class C1 . 
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B. Fixed and Adaptive Expected Quality 

The expected values of different classes, Q 
1 

's, depend 

on both the classifier and suppression components of the 

pipeline, thus Q evaluates the joint performance of the 

classifier and suppression components. Now, it is of interest 

to know how utilizing a noise classifier in the pipeline 
translates to a better suppression performance of the entire 

pipeline. To answer this question, we introduce a measure 
named Suppression Advantage (SA) here that quantifies the 

amount of improvement in quality measure when using an 
environment-adaptive suppression pipeline. This measure 

allows one to quantify how the overall performance improves 
when the classification performance improves. 

Let Q{A} be the expected quality associated with the 

adaptive suppression pipeline using a noise classifier with a 

confusion matrix of P as defined in ( 4), and Q{F} 

correspond to the fixed suppression using the same fixed 
suppression parameter set for all noise classes, then 

N 

Q{A} = IPriCCJ).Qj{A}, (9) 

}=I 

N 

Q{F} = LPa(Cj).Qj{F}. (10) 

}=I 

For adaptive suppression, from (7) and (9), we have 

For fixed suppression, we have 

Vi= 1,. . ., N, 
Qu {F} =constant = Q1 {F}, (12) 

VJ= l,. . .,N. 

Therefore, based on (2) and from ( 4), we can write 

(13) 

It can be easily seen that Q 
1 

{F} is independent of the 

confusion matrix, i.e. the expected quality is independent of 
the classifier performance. 

C. Suppression Advantage Measure 

To quantify the quality improvement, a base expected 

quality measure value is computed when there is no 
suppression, and then the SA measure is defined as the 

amount of increase in the quality measure for fixed or 
adaptive suppression pipelines. 

Let Q 
1 

{N} be this base quality measure value 

corresponding to the noise class C1 . This value is the one 

given by the quality measure Q when no suppression is 

performed on speech signal. Then, SA of an environment­

adaptive or fixed pipeline with respect to the quality measure 

Q can be stated as 

SAQ{A} ~ Q{A}-Q{N}, 

SAQ {F} ~ Q{F} - Q{N}. 

(14) 

(15) 

Furthermore, it can be easily derived that the suppress10n 

advantage of a pipeline for each noise class is 

SAj{A}=Q
1
{A}-Q

1
{N}, VJ=l,. .. N, (16) 

SAj{F} = Q
1
{F}-Q

1
{N} 

= Q1 {F} - Q1 {N}, VJ = 1,. .. N. 
(17) 

V. REAL-TIME IMPLEMENTATION RESULTS 

We used noise data recorded by the BTE microphone 

worn by Nucleus ESPrit cochlear implant users which were 

sampled at a rate of 22050 Hz in four commonly 

encountered noise environments of Street, Car, Restaurant 

and Mall. These data were recorded in real noise 

environments using the FDA-approved PDA research 

platform for CI studies as described in [6, 7]. In all our 

classification tests, we used 50% of the data for training and 

50% for testing with no overlap between the training and 

testing data sets. We also used the CIPIC HRTF database 

[12] to generate the left and right microphone signals as 

explained in [6]. For each microphone signal, a 26-

dimensional feature vector consisting of 13 Mel-Frequency 

Cepstrum Coefficients (MFCC) and 13 L'lMFCC features 

were used as discussed in [5]. For enhancement evaluations, 

the collected real noise data were used to generate noisy 

signals of the IEEE speech sentences in [13]. 

Table II compares the Correct Classification Rates 

(CCRs) using our dual-microphone classification and the 

feature-level approach with that of our previously developed 

single-microphone classification in [5]. Using the dual­

microphone classification, CCR improved by about 9.4%. 

Although using majority voting over a number of past 

classification decisions improved the classification 

performance considerably, time delays were introduced as a 

result of considering past decisions. The dual microphone 

approach allowed us to lower the number of past decisions 

leading to less time delays compared to the single 

microphone approach. As shown in Table II, when using 10 

frames for majority voting, 7% classification improvement 

was achieved while getting 50% less time delay. Note that 

this improvement became less pronounced as more frames 

or a longer history of past decisions was considered for 

majority voting at the expense of more time delay which 

ultimately limited the real-time operation of the entire 

pipeline. 

Table III provides the feature extraction and classification 

processing times for l l .6ms speech frames on both the 

FDA-approved PDA platform with a 624 MHz clock rate as 

well as the PC platform with a 3.0 GHz clock rate while 

using the majority voting over past 20 frames. As can be 

seen from this table, the extra computation time due to the 
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TABLE II.  CORRECT CLASSIFICATION RATES OF DUAL-MICROPHONE 

CLASSIFICATION COMPARED TO SINGLE-MICROPHONE CLASSIFICATION FOR 

DIFFERENT NUMBER OF PAST DECISIONS OR FRAMES IN MAJORITY VOTING 

Correct 

Classification 

Rate (%) 

Without 

majority 

voting 

With majority 

voting over 

last 10 

decisions 

With majority 

voting over 

last 20 

decisions 

Single-mic 74.3 81.6 91.5 

Dual-mic 81.3 87.7 92.1 

 

TABLE III.  AVERAGE TIMING PROFILE OF THE ENTIRE PIPELINE FOR 

11.6 MS FRAMES (IN MS) 

Platform 
Total 

Time 
A B C D E 

PDA (single-mic) 8.52 2.41 1.34 2.03 0.91 1.83 

PDA (dual-mic) 10.39 2.41 2.62 2.03 1.80 1.83 

PC 0.89 0.41 0.21 0.14 0.07 0.06 

A: FFT computation and suppression; B: Speech decomposition; 

C: VAD decision; D: Feature extraction and classification; 

E: Channel envelope computation. 

 

dual-microphone classification did not limit the real-time 

operation of the entire pipeline, i.e. the processing time 

stayed less than the frame length of 11.6ms (256 samples at 

22050Hz sampling rate).  

The dual-microphone approach also led to a better 

suppression performance of the environment-adaptive 

pipeline for all the noise classes as shown in Fig. 2. The 

same rule for all the classes was used for fixed noise 

suppression and the ideal system was assumed to have a 

perfect classification accuracy. This figure shows the SA 

values with respect to Perceptual Evaluation of Speech 

Quality (PESQ) [14], an objective quality measure proposed 

by ITU-T. One can see that the dual-microphone approach 

provided better SA over the single microphone approach 

when using the environment-adaptive pipeline and also 

when using the fixed pipeline. 

VI. CONCLUSION 

A real-time dual-microphone noise classification approach 

for environment-adaptive noise suppression in cochlear 

implants has been introduced in this paper. When using a 

dual-microphone, it was shown that the feature-level 

combination approach was more suitable for real-time 

implementation than the decision-level combination 

approach due to its computational and memory efficiencies. 

It was also shown that the classification accuracy was 

improved as a result of using a dual-microphone compared 

to using a single microphone. A new measure named 

Suppression Advantage was also introduced to evaluate 

fixed and adaptive suppression pipelines of cochlear 

implants and it was shown that the dual-microphone 

classification provided better suppression advantage.  
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