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Abstract— We present a novel approach for enhancing struc-
turally significant features in a scene to facilitate safe mobility
with prosthetic vision. Previous approaches rely on visually
salient features (e.g., intensity gradients, size, texture), or
surface fitting (e.g., ground plane extraction), to determine
and convey regions of structural change in the scene. Such
approaches can be costly to compute, and/or are not guaranteed
to detect all features relevant to the needs of safe mobility (e.g.,
small, low-contrast trip hazards). Assuming a dense disparity
image, we propose a novel feature using iso-disparity contours.
Regions of significant structural change are detected via a cost
function based on local comparisons of iso-disparity contour
orientations. Through this, structurally interesting features such
as surface boundaries and general clutter are extracted and
emphasised in the output visual representation. Our approach is
real-time, and requires no surface fitting. Experimental results
quantitatively and qualitatively validate our approach.

I. INTRODUCTION

Enabling safe and efficient mobility is a primary aim
of current and near-term visual prostheses. In particular,
retinal prostheses have seen significant advances in recent
years. Retinal prostheses achieve stimulation via an array of
electrodes which is implanted close to the retina. Electrical
stimulation aims to elicit a neural response in the retinal
ganglion cells, leading to higher levels of response in the
visual cortex. The percept elicited by this process is known as
a phosphene: described as a bright ‘star-like’ spot of light [1].
Psychophysical studies show that the shape and brightness
of phosphenes can be varied by modulating stimulation
parameters, allowing visual representations of the scene
to be rendered. However, current devices are significantly
restricted in the resolution and dynamic range they provide,
motivating researchers to consider ways to efficiently encode
visual information about the scene.

Most visual prostheses acquire scene information via an
externally worn camera (exceptions include [2], where eye-
resident photodiodes are used). This allows vision processing
to extract important information present in the high resolu-
tion images and encode it in efficient visual representations
of the scene appropriate for the implant.
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In the case of orientation and mobility with prosthetic
vision, previous work has primarily focussed on mobility
using down-sampled intensity images. Studies such as [3],
[4], [5], [6], [7] have demonstrated basic way-finding and ori-
entation using intensity alone with relatively few phosphenes.
These studies, however, assume (or construct) high-contrast
environments to assist navigation. Visual saliency has also
been explored, both for cueing obstacles in the visual rep-
resentation [8], or using the output saliency map as the
visual representation [9]. The use of intensity features such as
edges, gradients, and texture have a strong biological basis,
however, they are unlikely to be sufficient for safe mobility
away from high contrast conditions with current and near-
term implants. In particular, small low-contrast obstructions
on the ground surface are likely to be missed.

Previous work has shown that artificially enhancing the
contrast between obstacles and the ground plane can sig-
nificantly improve the perception of small ground-based
obstacles [10]. In [11], this is achieved by extracting a
ground-plane model in stereo disparity data in order to aug-
ment a depth-based representation by darkening the ground,
and scaling up all non-ground phosphenes (referred to as
Augmented Depth). However, surface fitting is error prone,
and does not easily scale to complex, cluttered scenes.
Determination of the ground plane can also be ambiguous,
often requiring dominant surface assumptions which do not
always hold when the camera is head-mounted, and scanning
the scene.

In this paper we propose a novel method for enhancing
structurally important features in the scene. Unlike previ-
ous approaches, we achieve this without computing pixel-
wise surface normals, estimating surface models or use of
appearance-based features in colour/intensity images. Rather,
we exploit the appearance of iso-disparity contours, i.e., lines
representing level sets of disparity, in disparity images to
statistically determine regions of structural significance in
the scene (i.e., surface boundaries and general clutter). We
have previously reported the use of iso-disparity contours for
planar surface fitting [12]. Here, we do not explicitly model
surfaces, but instead treat iso-disparity contour orientations
as an observable feature in disparity space, from which
smooth and non-smooth regions may be inferred. Results
show our method accurately and robustly highlights all ob-
structions in the scene, as well as major surface boundaries.
Qualitative examination of the resulting visual representation
in simulated prosthetic vision demonstrates the potential of
our approach to support safe mobility with current and near-
term visual prostheses.
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Fig. 1. Clock-wise from top left: rgb image of scene, input disparity image,
iso-disparity contour image, perturbance map.

II. APPROACH

Input is a dense, discretised disparity image D, obtained
by inverting and scaling the depth map obtained from an
RGB-D sensor. The described process assigns each pixel
in D a ‘perturbance’ score, which reflects the structural
significance of a given region such that pixels corresponding
to clutter or surface boundaries are expected to have a
higher perturbance score than pixels on smooth surfaces.
The perturbance score is calculated by locally comparing
the orientation of iso-disparity contours in local regions. By
definition, smooth surfaces will exhibit highly uniform iso-
disparity contours. In contrast, clutter and surface boundaries
will exhibit relatively non-uniform and/or discontinuous iso-
disparity contours. Based on this observation, we detect such
features in four steps, outlined below:

A. Extraction and Multi-scale histogramming of iso-
disparity contours

Canny edge detection [13] is applied to D to produce a
binary image of iso-disparity contours, determined from the
boundary between discrete disparity levels (see Figure 1).
These iso-disparity contours are then divided into linear
piecewise segments, in order to estimate the local orientation
of each contour point. This is achieved by iteratively forming
straight line segments on contour points until an error of 4
pixels is exceeded, at which point the segment is stored and
the process repeated.

A multi-scale sliding window is passed over the iso-
disparity image to determine the local distribution of iso-
disparity orientations at each position. Orientations within
each window are counted into a number of discrete histogram
bins B. In the experiments we set B = 9. For a window
with side length s at position (u, v), the resulting histogram
is denoted as Hs,u,v : [1 .. B]→ R.

B. Window perturbance calculation

The dissimilarity between two windows in the same scale
is computed by comparing their histograms. We define a
smoothed cost metric between two windows of scale s
positioned at (u, v) and (u′, v′) as

Cs(u, v, u′, v′) = log

(
1 +

∑B
b=1

∣∣Hs,u,v(b)−Hs,u′,v′(b)
∣∣∑B

b=1 max(Hs,u,v(b), Hs,u′,v′(b))

)

This cost reflects the non-overlapping portion of the his-
tograms as a ratio to total size. A nonlinear function is used
to balance and reduce the effect of large costs.

The perturbance of a given window is taken as the min-
imum cost between the window and neighbouring windows
in the same scale. Thus, given a scale s, window position
(u, v), neighbourhood radius r, and neighbour step size ns,
the scale perturbance of the window is given by

Ps(u, v, r, ns) = min
−r≤i≤r,−r≤j≤r

Cs(u, v, u+i ·ns, v+j ·ns)

Taking the minimum effectively compares the window to
its most similar neighbour. The dissimilarity between the
two is proportional to the likelihood that the pixel represents
clutter. In the experiments, we set r = 10 and ns = 15.

C. Multi-scale perturbance calculation

The multi-scale perturbance of a given point is computed
by first finding the window perturbance of the point for a
number of different scales, and then merging the results via
a weighted average by window occupancy. Thus, defining S
as the set of window sizes and C(u, v, s) as the iso-disparity
contour pixel count of the window of size s positioned at
(u, v), the perturbance score for a pixel is given by

P(u, v, r, ns, S) =
∑
s∈S

C(u, v, s)

s · s
Ps(u, v, r, ns)

We set S as {20, 30, 40} in the experiments.

D. Contour-disparity ratio and gradient magnitude adjust-
ment

We perform two post-processing steps on the pertur-
bance image using D: lowering the perturbance of fronto-
parallel surfaces, and increasing the perturbance of depth-
discontinuity edges.

Fronto parallel surfaces pose a challenge since their iso-
disparity contours are relatively sparse. We detect such sur-
faces explicitly by computing the local ratio of iso-disparity
pixels to the total number of valid disparity values. If the
ratio is near-zero, then we assume the region represents a
near-frontal surface.

Gradient magnitude thresholding of D was performed
to explicitly identify depth discontinuity edges in order to
increase surface boundary recall. Any pixel in the normalised
gradient magnitude image of D with a value above 0.0005
was assumed to represent part of a depth discontinuity edge.

III. EXPERIMENTAL RESULTS

A. Quantitative comparison: surface boundary recall

To validate the appropriateness of our approach, we pro-
vide two measures:
• surface boundary recall rate (SBRR): the proportion of

correctly labelled pixels along surface boundaries; and,
• ground plane mislabel rate (GPMR): the proportion

of ground plane pixels incorrectly labeled as surface
boundaries/clutter.
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(a) (b) (c)

Fig. 2. Images used for quantitative results in Table I, and their corre-
sponding t=0.4 binary thresholded perturbance maps.

Perturbance t=0.4 Perturbance t=0.7 Plane Fitting
Image Id SBRR GPMR SBRR GPMR SBRR GPMR

(a) 0.98 0.18 0.62 0.04 0.74 0.00
(b) 0.94 0.21 0.54 0.05 0.52 0.05
(c) 0.90 0.25 0.52 0.07 0.71 0.03

TABLE I
QUANTITATIVE RESULTS SHOWING SURFACE BOUNDARY RECALL RATE

(SBRR), AND GROUND PLANE MISLABEL RATES (GPMR) FOR THE

PERTURBANCE MAP (THRESHOLDS 0.4 AND 0.7), AND PLANE FITTING.

Ground truth was obtained via hand-labelling of pixels along
all surface boundaries, and the ground plane. These metrics
were calculated using a thresholded binary segmentation of
the normalised perturbance image.

Table I shows results for a set of test images shown in
Figure 2. Here we report SBRR and GPMR results using
the proposed perturbance map with thresholds t = 0.4 and
t = 0.7. For comparison, we also include results obtained
from the plane-fitting technique described in [12]. We include
this to validate how the proposed method compares in
distinguishing navigable vs non-navigable space in the scene.

Most notably, the 0.4 perturbance map achieves an SBRR
above 90% for all images (i.e., 98%, 94%, and 90%), with
the best result achieved for Figure 2(a). GPMR results for
the perturbance map are less impressive for t=0.4 (i.e.,
18%, 21%, and 25%), but improve significantly for t=0.7
(i.e., 4%, 5%, and 7%), indicating a clear trade-off between
recall rate and mislabelling. Visual inspection of the 0.4 per-
turbance segmentation shows that in all images, mislabelling
is primarily due to the thickness of boundary segmentations.
Away from the ground surface boundaries, mislabelling is
rare. The comparatively lower SBRR results for plane fitting
are unsurprising given the method makes no explicit attempt
to detect boundaries. Thus, ground plane labels can easily
bleed across boundaries.

B. Qualitative assessment

The first two columns of Figure 3 show sample images
and the resulting perturbance map obtained using the pro-
posed method. It can be seen that the perturbance map
provides clear delineation between clutter in the scene and
the dominant smooth surfaces. In particular, small ground
obstacles such as those shown in rows 1 and 4 are given

high perturbance scores relative to the ground plane. Non-
ground smooth surfaces such as walls (Row 3) and table
tops (Row 5) are de-emphasised relative to other clutter in
the scene.

Column 3 shows a our proposed perturbance-based vi-
sual representation using simulated prosthetic vision (SPV)1

Phosphene levels are determined from a direct sampling
of the smoothed and normalised perturbance map, thus
conveying the extent of clutter and non-smoothness in each
each phosphene’s visual field. For comparison, Column 4
shows an SPV rendering using a standard intensity-based
visual representation (i.e., down-sampling of the original
intensity image). Column 5 shows the plane-fitting-based
Augmented Depth visual representation [11], in which a
depth-based visual representation is augmented to increase
contrast between ground and non-ground phosphenes using
ground plane segmentation. While providing similar artificial
enhancement of ground obstacles to our proposed method,
we expect the perturbance-based approach to provide a more
general perception of structure in the scene. This increased
emphasis of scene structure is particularly evident in rows
2, 3 and 5 where obstacles are similarly emphasised, but
more distinguishing detail is present in the perturbance-based
visual representation. As expected, low-contrast objects are
generally not visible in the intensity-based representation.

IV. DISCUSSION

The above results demonstrate the effectiveness of the
proposed perturbance map for detecting and emphasising
structurally significant regions in the scene. While plane-
fitting methods can generally be expected to achieve greater
ground pixel labelling than our approach, quantitative results
above demonstrate a significantly better recall rate for surface
boundaries using the perturbance map. This is arguably the
more relevant performance indicator for safe mobility with
prosthetic vision, ensuring all boundaries in the scene are
preserved, and no potential trip hazards are missed. It is
also important to note that the perturbance-based approach
makes no planar surface assumptions; it simply characterises
smoothness. The perturbance map also provides a richer
description of the scene, characterising all regions of clutter,
as well as object shape. A possible extension of this work
is to combine the perturbance map and plane fitting under a
globally optimised segmentation frame-work.

V. CONCLUSION

We have proposed a novel feature for detecting and char-
acterising regions of structural interest in the scene to support
mobility with a visual prosthesis. Our approach avoids as-
sumptions of high contrast environments, and removes the
need to explicitly reconstruct the scene via surface fitting.
Our results demonstrate how the proposed perturbance map
may be utilised to emphasise all surface boundaries and
clutter in the scene, robustly and efficiently. More generally,
the proposed approach demonstrates how a more qualitative

1We show these results using a simulation based on Bionic Vision
Australia’s suprachoroidal 98 electrode array [14].
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Fig. 3. Qualitative results (from left to right): RGB image, perturbance map, perturbance-based SPV, intensity-based SPV, and Augmented Depth[11]
SPV

analysis of scene structure using depth data may provide
advantages for supporting mobility with near-term prosthetic
vision devices. Human mobility trialling must be conducted
to more accurately assess this.
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