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Abstract— We report on the neuromorphic sound localization 

circuit which can enhance the perceptual sensation in a hearing 

aid system.  All elements are simple leaky integrate-and-fire 

neuron circuits with different parameters optimized to suppress 

the impacts of synaptic circuit noises.  The detection range and 

resolution of the proposed neuromorphic circuit are 500 us and 

5 us, respectively.  Our results show that, the proposed 

technique can localize a sound pulse with extremely narrow 

duration (~ 1 ms) resulting in real-time response. 

 

I. INTRODUCTION 

There is an increasing demand for the development of 
real-time and low-power sound localization technique in the 
hearing aid industries [1]-[2].  Currently, various digital 
processing techniques based on Fast Fourier Transform (FFT) 
have been proposed to determine from where a sound signal 
was generated [3]-[4].  However, these techniques require 
considerable latency (~ 100 ms) for the sampling of sound 
signal.  In addition, it is necessary to use power consuming 
devices such as Digital Signal Processor (DSP), 
Analog-to-Digital (AD) converter, and memory to perform 
complex signal processing.  On the other hand, it has been 
recently reported that a neuromorphic silicon cochlea can be 
utilized for spatial audition and auditory scene analysis [5].  
Because the event-based cochlea produces a sparse stream of 
events just like the human auditory system, post-processing 
for sound localization can be cheaper than digital methods.  
Previously, it has been reported that the binaural sound 
localization is accomplished by measuring the Interaural Time 
Difference (ITD) [6].  The ITD between sounds arriving to 
two silicon cochleas can be extracted simply by comparing the 
timing information of spike outputs [6]-[8].  These techniques 
employed the computational algorithm (for example, cross 
correlogram [7] and artificial neural networks [8]) to estimate 
the location of a sound source.  In this paper, we devise the 
neuromorphic sound processing circuit by mimicking the 
neuronal organization of barn owl’s auditory pathway.  In 
neurobiology, the dominant model of barn-owl’s sound 
localization has consisted of a set of delay lines with 
predetermined delays of expected ITDs and an array of 
coincidence detectors, which are located in Nucleus 
Magnocellularis (NM) and Nucleus Laminaris (NL) of the 
auditory system [9].  Even though there have been several 
previous efforts to use digital circuits for implementing delay 
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lines and coincidence detectors [10]-[12], it is still desirable to 
design in a spiking neuron circuit level for fast response of 
neuromorphic sound processing.  In addition, it is required to 
develop a spatio-temporal processing circuit for obtaining 
auditory space maps tonotopically organized in the Inferior 
Colliculus (IC) [12]-[14].  Here we present a neuromorphic 
sound localization circuit being made up of delay, 
Coincidence Detection (CD), Time Division Multiplexing 
(TDM), and integration neurons.  All processing elements are 
simple Leaky Integrate-and-Fire (LIF) neurons to be 
implemented in VLSI circuit without elaborate effort.  
Because the proposed technique needs to be designed with 
precise timing accuracy better than sub-millisecond, whole 
circuits become to be vulnerable to synaptic circuit noises.  
Thus, we optimized the membrane and synaptic time constants 
of each neuron element to minimize the effects of synaptic 
noises of VLSI circuit.  In particular, we report that the 
neuromorphic spatio-temporal processing of auditory space 
maps can be implemented by using TDM and integration 
neurons.  The results show that the proposed neuromorphic 
technique can localize a sound pulse with extremely narrow 
duration (~ 1 ms) resulting in real-time response. 

 

II. METHOD AND RESULTS 

Neuromorphic silicon cochlea emulates basilar 
membranes, inner hair cells, and ganglion cells [15].  Because 
the spike outputs are transmitted rapidly via an address event 
interface, it properly preserves the timing relationships of 
synaptic transmission.  Fig. 1 (a) shows the experimental setup 
to localize the sound source using the silicon cochlea.  A 
speaker located to the left of the cochlea speaks “ah” while 
moving to the right (the distance between the speaker and the 
cochlea board is 40 cm).  The incoming sound first passes 
through the basilar membranes which consist of 2 cascaded 
filter banks and is separated into 64 different frequency bands.  
The filtered signals are sent to the inner hair cells which 
perform a half-wave rectification of the input.  The output of 
the inner hair cell then drives a set of 4 neurons within each 
frequency band [15].  Thus a total of 256 spike trains from 
each ear are generated as shown in Fig. 1 (b). 

 

Figure 1.  Silicon cochlea board and (b) spiking outputs. 
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Fig. 2 (a) shows the proposed neuromorphic sound 
localization technique based on LIF neurons.  Spiral ganglion 
neurons in the barn owl produce action potentials in response 
to the sound waveform at each frequency channel.  The 
temporal patterns of these action potentials are preserved 
along the time-coding pathway to NL [10].  Thus, the outputs 
of 256 ganglion neurons in each silicon cochlea are directly 
connected to CD neurons via several discrete time delays as 
shown in Fig. 2 (a).  In this case, CD neurons receive inputs 
which are counter-propagating across delay lines from both 
silicon cochleas.  Each CD neuron is sensitive to binaural 
sounds with a specific ITD because it fires whenever two 
combined Excitatory Post-Synaptic Potentials (EPSPs) 
present simultaneously from both ipsilateral and contralateral 
pathways reach a threshold.  In neurobiology, the outputs of 
NL neurons are transmitted to IC neurons in order to produce a 
systematic map of auditory space [16].  To emulate the 
function of IC neurons, we propose a neuromorphic 
spatio-temporal processing method based on TDM and 
integration neurons.  Each TDM neuron multiplexes all the 
outputs of CD neurons assigned to a specific ITD into one 
pathway.  This enables us to investigate the temporal spike 
density generated at each ITD domain.  Then the TDM output 
is sent to the integration neuron.  This neuron integrates the 
temporal spikes over time window of fixed length which is 
determined by the membrane and synaptic time constants.  
Thus, the output spike of integration neuron represents the 
specific ITD at a certain time window.  In this case, because 
one integration neuron also receives the TDM outputs from 
other ITD domains through inhibitory synapses, it prevents 
multiple firing of spikes at the same time window.  In the 
numerical simulation, the number of delay neurons located in 
one channel was set to 200 (delay = 2.5 us).  Thus, the 

measurement range and resolution of ITD detection are 500 
us and 5 us, respectively.  Fig. 2 (b) shows simple synapse and 
LIF neuron circuits which can be implemented with a few 
transistors.  The synaptic and neuron membrane time 
constants can be adjusted by setting capacitances. 

 

Figure 2.  (a) Neuromorphic sound localization model (t: delay neuron, 
CD: coincidence detection neuron, TDM: Time Division Multiplexing neuron) 
and (b) synapse and neuron circuit. 

It should be noted that, even though a neuromorphic chip 
is operating in a low-voltage environment, the electronic noise 
can be generated by the thermal agitation of the electrons.  
Thus, it is necessary to design the neuromorphic sound 
localization circuit considering the effects of the noise.  In 
computational biology, a neuron is considered to contain 
various sources for noise.  For example, ions and electrons 
performing a Brownian motion driven by thermal energy 
causes membrane noises.  In addition, the spontaneous release 
of neurotransmitters causes synaptic noises [17]-[18].  The 

impact of noise on neuronal dynamics has been studied in 
detail in LIF neuron model.  The general form of the basic 
equation for sub-threshold behavior of the LIF neuron can be 
written as 

mdV/dt = Vr – V + RI       (1) 

where m is the membrane time constant, V is the 
membrane potential, Vr is the resting potential, R is the 
membrane resistance, and I is the input synaptic current.  
The input synaptic current including white noise can be 
expressed as 

I(t) = (t) + (t)(t)        (2) 

where  is the mean of the synaptic input,  is the standard 

deviation of the noise, and  represents white Gaussian 
noise.  Equation (1) can be transformed to the stochastic 
differential equation by using Ito’s Lemma and Wiener 
process, and then the membrane potential represented by 
the Markov chain Vt can be obtained as [18] 

Vkt = (Vr – V(k-1)t + R(k-1)t)t/m + R(k-1)tZk(t/m)1/2  (3) 

where t is the time step of numerical calculation and Zk 
are normal random numbers with mean zero and variance 
one.  In this equation, the mean synaptic input current can 

be defined as (t) = w*exp(-(t-t0)/s), where w is the 
synaptic weight, t0 is the onset time of synaptic input, and 

s is the synaptic time constant [19].  Table 1 shows the 
neuron model parameters used in the numerical simulation.  
We investigated the neuronal dynamics by varying the 
membrane capacitance and synaptic time constant. 

TABLE I.  NEURON MODEL PARAMETERS 

Parameter Value Description 

Vr -60 mV Resting potential 

 V0 -60 mV Reset potential 

R 1 M Membrane resistance 

 

A.  Delay Neuron 

In the barn owl, afferent axons in the NL act as delay lines 
[20].  However, to use electrical delay lines, it should be 
required to have conductor lines with the total length of ~ 1 
km.  Thus, it is proper to employ a buffer for a neuromorphic 
delay line.  In this paper, we utilized the LIF neuron as an 
analog buffer.  Fig. 3 (a) shows membrane potentials 
calculated as a function of time.  The membrane potential of a 
delay neuron starts to increase as soon as the synaptic current 
is injected.  In this case, the membrane potential increases 
rapidly with faster membrane time constants.  In the 
simulation, the maximum membrane potential was maintained 
to be constant at -42 mV by adjusting the synaptic weight.  
The delay neuron fires a spike when the membrane potential 
becomes beyond the threshold.  Thus, the temporal spikes can 
be delayed with a certain amount of time.  This delay can be 
controlled by setting the threshold properly.  For example, to 
obtain a 2.5-us time delay, the threshold can be set to -46 mV 

when m is 2 us.  However, the delay time can be varied in the 
presence of the synapse and threshold noises.  Fig. 3 (b) shows 

the delay variation simulated while varying m and s (number 
of simulation = 300).  The results show that the standard 
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deviation of delay variation can be minimized when m and s 
are 3 ms and 4 us, respectively. 

 
Figure 3.  Membrane potentials calculated as a function of time (m = 2, 8, 

32, 128, 4096 us and s = 30 us) and (b) standard deviations of buffer delays 

calculated while varying the synaptic time constant (m = 10, 30, 100 us and 1, 

3, 10, 30, 100 ms,  = 1 nA, threshold noise = 10 uV, and number of 
simulation = 300). 

 

B.   Coincidence Detection Neuron 

The CD neurons receive spikes conveyed from ipsilateral 
and contralateral pathways.  In particular, these neurons 
respond to the spikes arrived simultaneously.  For example, 
the maximum membrane potential decreases as the time 
difference between two synaptic inputs increases as shown in 
Fig. 4 (a).  Thus, the detectable time difference can be 
controlled by adjusting the threshold.  The detection resolution 
of these CD neurons is also changed by synaptic noises.  Fig. 
4 (b) shows the detection variation simulated while 

varying m and s when standard deviations of synapse and 
threshold noises are 0.3 nA and 10 uV (number of 
simulation = 300).  The results show that the standard 

deviation of detection variation can be minimized when m 

and s are 1 us and 2 us, respectively.  In the simulation, we 
assumed that the detection resolution was 3 us. 

 
Figure 4.  (a) Membrane potentials generated by two synaptic inputs (time 

difference = 0, 1, 2, 2.5, 3, 4, 5 us and  = 0.3 nA) and (b) standard deviations 
of coincidence detections calculated while varying the synaptic time constant 

(m = 0.1, 0.3, 1, 3, 10 us,  = 0.3 nA, threshold noise = 10 uV, and number of 
simulation = 300). 

Because the synaptic noise changes the actual detection 
resolution, the CD neuron does not respond to specific ITD, 
which in turn may cause a significant error.  Fig. 5 (a) shows 
the number of full detection simulated while varying the 
designed detection resolution (simulation number = 300).  In 
each simulation, ITD was varied from 0 to 5 us with a time 
step of 0.1 us (we assumed that ipsilateral and contralateral 
delays were 252.5 and 250 us, respectively).  The results show 
that the detection resolution should be designed to be more 

than 3.5 us when  is less than 0.8 nA.  Using these design 
parameters and spikes data obtained from silicon cochleas in 
Fig. 1 (b), we performed the CD simulation as shown in Fig. 5 
(b) (neuron channel = 136 (@ 910 Hz)).  The results show that 

the firing CD neuron number is shifted with respect to time 
(i.e., measured ITD = -200 ~ 300 us @ time duration from 1 to 
2.2 s). 

 

Figure 5.  (a) Number of full detection simulated while varying the 
detection resolution (contralateral delay = 250 us, ipsilateral delay = 252.5 us, 

number of simulations = 300, m = 1 us, s = 2 us) and (b) outputs of 200 CD 
neurons @ 910 Hz (neuron channel = 136). 

 

C.   Time Division Multiplexing Neuron 

Auditory neurons in IC integrate information across 
frequency channels to create an auditory space map.  Fig. 6 
shows auditory space maps measured during various time 
intervals.  The measured channel frequencies were ranged 
from 846 Hz to 1411 Hz because the phase locking of cochlea 
is limited to frequencies less than 1.5 kHz [21].  The tonotopic 
distribution of spikes generated from CD neurons is shifted 
over to the right as time passes.  The insets show the sum of 
spiking rates across all frequency channels.  The results show 
that the auditory space map can be obtained even when the 
time interval is reduced to 1 ms (Fig. 6 (d), (e), and (f)).  Thus, 
the proposed technique can localize a sound pulse with narrow 
duration (~ 1 ms) unlike the conventional digital method. 

 
Figure 6.  Measured auditory space maps (a) time duration = 50 ms @ 1.1 s, 
(b) time duration = 50 ms @ 1.5 s, (c) time duration = 50 ms @ 2.1 s, (d) time 
duration = 1 ms @ 1.1 s, (e) time duration = 1 ms @ 1.5 s, and (f) time duration 
= 1 ms @ 2.1 s. 

To integrate all of the spikes information across whole 
frequency channels, it is required to integrate spikes from 
every pathway.  To do this, we propose to combine all spikes 
generated from each frequency channel using the TDM 
neuron as shown in Fig. 2.  Fig. 7 shows the output spikes 
measured at all TDM neurons.  Here the membrane and 
synaptic time constants were designed to be very small to have 

sub-microsecond multiplexing resolution (m = 1 us and s = 
0.01 us). 
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Figure 7.  Output spikes measured at all TDM neurons (m = 1 us and s = 
0.01 us). 

 

D.   Integration Neuron 

Neurons can operate in two different ways, which are 
determined by mean inter-spikes interval of the input and the 
effective summative period of the neuron.  For example, if the 
effective summative period is longer than the mean 
inter-spikes interval, neuron acts as temporal integrators.  On 
the contrary, if the effective summative period is shorter, then 
it is expected to act like a coincidence detector.  Thus, to 
integrate sub-microsecond input spikes in the proposed 
technique, the membrane and synaptic time constants were set 
to be longer than 1 us.  It should be noted that each integration 
neuron receives spikes from all TDM neurons via either 
excitatory or inhibitory synapses.  In this case, the synaptic 
weight of inhibitory synapse is increased as the channel 
distance between the integration and TDM neurons increases.  
This weighted synaptic connection prevents a simultaneous 
firing of integration neurons located at a long distance.  Fig. 8 
(a) shows the spikes of integration neurons when spikes trains 
generated with normal distribution are injected.  By averaging 
the excitatory and inhibitory synaptic inputs, the output of 
integration neurons is not fluctuated sharply.  Fig. 8 (b) shows 
the final output spikes of 200 integration neurons.  In this 
figure, the membrane and synapse time constants were set to 1 
us and 1 us, respectively.  The integrating time window can be 
adjusted properly in accordance with a sound duration.  

 
Figure 8.  (a) Integrating example of integration neurons (inset: input spikes 
generated with normal distribution) and (b) final outputs of all integration 

neurons (m = 1 us and s = 1 us). 

 

III. CONCLUSION 

We have reported on the neuromorphic sound localization 

technique using spiking neuron circuits.  Unlike previous 

techniques, the proposed technique can be easily 

implemented by analog silicon circuits.  The results show that 

the proposed neuromorphic technique can localize a sound 

pulse with narrow duration (~ 1 ms) resulting in real-time 

response.  In addition, because the whole neuromorphic 

sound localization circuit requires only 200,000 transistors, it 

can be implemented with low-power consumption.  Thus, this 

technique holds promise for use in reliable real-time and 

low-power sound localization for binaural hearing aids. 
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