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Abstract— EEG brain-computer interfaces (BCI) require a
calibration phase prior to the on-line control of the device,
which is a difficulty for the practical development of this
technology as it is user-, session- and task-specific. The large
body of research in BCIs based on event-related potentials
(ERP) use temporal features, which have demonstrated to be
stable for each user along time, but do not generalize well
among tasks different from the calibration task. This paper
explores the use of low frecuency features to improve the
generalization capabilities of the BCIs using error-potentials.
The results show that there exists a stable pattern in the
frequency domain that allows a classifier to generalize among
the tasks. Furthermore, the study also shows that it is possible
to combine temporal and frequency features to obtain the best
of both domains.

I. INTRODUCTION

EEG-based brain-computer interfaces (BCIs) build a com-

munication channel between the user and a device based on

brain activity, with a wide range of non-clinical and clinical

applications [1]. In all BCIs there is a calibration phase to

learn a mapping from EEG activity to the control space

that operates the device. This calibration has to be carried

out for each subject to deal with the large inter-user EEG

variability [1]. In addition, a common procedure is also to

recalibrate the BCI for each new task and even for the same

task between sessions, to deal with the EEG variability [2],

[3]. This is a large shortcoming of current BCI technology

as the calibration is a tedious and boring process (that may

take between 30 and 45 minutes for error potentials [12]).

Calibration is dependent on the EEG signal used for the

BCI. On one hand, for self-generated brain activity (such

as the motor imagery of body limbs [4]) there is a body of

work to deal with EEG non-stationarities, either to reduce

the calibration time [3] or to minimize the impact in the

decoding performance [2]. On the other hand, BCIs that rely

on external cues such as those using event-related potentials

(ERPs) [5], have a better generalization among sessions but

do not generalize between different tasks. This is because

the amplitude and latency of their components are affected

by factors such as spatial attention [6]; stimuli contrast [5];

the probability of appearance of the expected stimulus [5];

the inter-stimulus interval [7]; user-dependent factors such as

age and cognitive capabilities [8]; and other cognitive aspects

such as the stimulus evaluation time (i.e., the amount of time

required to perceive and categorize a stimulus) [5], [9].
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Fig. 1. From left to right, experiments 1 to 3.

The on-line detection of ERPs relies on the fact that

these signals are phase-locked to a trigger event [5], [10].

Thus, successful single-trial detection has been carried out

mainly in the temporal domain [11], [12], despite of the

single-trial temporal variability. A recent study showed that

different tasks of these BCIs induce a phase change (i.e.

different latencies) in the components of error potentials [13].

As a result, the use of temporal features of the ERP (e.g.

amplitudes) significantly degrades ERP detection rate when

the tasks in the calibration and execution phase are different.

Nonetheless, it is possible to estimate the latency variations

between different ERPs and use it to reduce the calibration

time of a new task.

Another possible alternative to avoid this degradation of

the detection rate could be the use of frequency features,

as these features are insensitive to phase shifts (and thus

latency) variations. Furthermore, in principle no information

from a new task is needed as long as the ERP amplitudes and

frequency components remain similar. This paper explores

the usage of low frequency components of error potentials

as a way of dealing with changes induced by different tasks

in the temporal domain. The results show that although

the detection accuracy within a single task is better in

the temporal domain, there exists a stable pattern in the

frequency domain that allows a classifier to generalize among

the tasks, and thus BCIs based on these features generalize

better. In practice, the study also shows that it is possible to

combine temporal and frequency features to obtain the best

of both domains.

II. METHODS

A. Data Recording

The EEG was recorded using a gTec system with 16

active electrodes (Fz, FC3, FC1, FCz, FC2, FC4, C3, C1,

Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 according to

the 10/10 international system), with the reference and the

ground placed at the left earlobe and AFz respectively. The

EEG was sampled at 256 Hz and power-line notch filtered

at 50 Hz.
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B. Experimental Setup

Six volunteer participants (five males and one female,

mean age 27) participated in the study. Participants were

instructed to observe movements performed by a device and

evaluate them as correct when they were towards a target

position and as incorrect otherwise, evoking non-error and

error potentials. The participants were asked to restrict eye

movements and blinks to specific resting periods.

Three experimental conditions with progressively higher

cognitive workload were designed (see Figure 1). In all the

experiments, the device performed correct/incorrect move-

ments until reaching a specific goal position. Time between

actions was random and within the range [1.7, 4.0] s, with

a 20% probability of performing an erroneous movement.

The first experiment consisted of a squared cursor that could

execute two actions (move one position left or right) in

a 1D grid with 9 different equally-distributed positions.

The second experiment displayed a simulated robotic arm

that could perform four actions (move one position left,

right, up or down) in a 2D grid with 13 equally-distributed

positions. The third experiment followed the configuration of

the second experiment, but using a real robotic arm. For more

information about the experiments, see [13]. Each experi-

ment lasted ∼ 2.5 hours. They were always executed in the

same order as presented above, with a time between sessions

of 17.58 ± 10.09 days. For each subject and experiment,

approximately 800 trials (around 160 and 640 error and non-

error potentials) were acquired.

C. Electrophysiology Analysis

For the time analysis, the time-locked averaged potentials

were computed for the error, non-error and difference (error

minus non-error averages) conditions at channel FCz. For

the frequency analysis, the power spectral density (PSD) of

each one-second trial was first computed using the Welch’s

method with a Hamming window and a window overlap of

50%. Then, the error, non-error and difference average PSDs

were computed at channel FCz. The r2 discriminability test

[14] between error and non-error conditions was computed

for each channel and time instant (time analysis), and each

channel and frequency component (frequency analysis).

D. Feature Extraction

Two different sets of features were extracted.

1) Temporal Features: The EEG was common-average

referenced (CAR) and [1, 10] Hz band-pass filtered. Temporal

features were the EEG voltages of each trial of eight fronto-

central channels (Fz, FC1, FCz, FC2, C1, Cz, C2, and CPz)

[12] within a time window of [200, 800] ms (being 0 the

stimulus onset) subsampled at 64 Hz, leading to a vector of

312 features. Finally, the features were normalized within

the range [0, 1].
2) Frequency Features: The EEG was common-average

referenced (CAR). For each of the channels used in the

temporal features, the PSD was computed on one second

of EEG after the stimulus onset as explained in subsection

II-C. The frequency features were the power values of each

channel from the theta band ([4, 8] Hz) ± 1 Hz (as previous

studies suggested that the error potentials are generated

within this band [10]), which led to a vector of 200 features.

Finally, the features were normalized within the range [0, 1].

E. Methods for Single-Trial Classification

Previous studies showed that the usage of temporal fea-

tures provoke a degradation of performance when training

with one experiment and testing with another one (i.e. gen-

eralization) [13]. The objective of the present classification

study was to analyze whether the frequency features or the

combination of both (temporal and frequency) are robust

enough to generalize among different tasks (experiments).

Single-trial classification was carried out using a support

vector machine (SVM) with a radial basis function (RBF)

kernel, as this classifier presents high accuracies when clas-

sifying ERPs [15] and error potentials in particular [12]. One

important drawback of SVM is its sensitivity to imbalanced

datasets. To avoid this drawback, the minority class (i.e. the

error class) was oversampled by random replication to match

the number of trials of the majority class (i.e. the non-error

class) [16].

To study the generalization capabilities of the different

feature sets, each task data was divided into a training and

a test set composed by 50% of the data each. The classifier

was evaluated in two different conditions. First, the baseline

accuracy was obtained by using the training and test sets

of the same experiment Ej (denoted EjEj). Second, the

classifier was trained using the train set of an experiment Ei

and tested on the test set of another experiment Ej . The train-

test combinations considered in the study were E1E2, E1E3,

and E2E3, following the combinations studied in [13].

III. RESULTS

A. Results of the Electrophysiology analysis

Fig. 2 (first row) depicts the error, non-error and difference

grand averages, for the three experiments. The three differ-

ence grand averages of the error potentials have an early

negativity and two broader positive and negative components,

in agreement with other studies [11], [12]. However, in line

with previous works, the latencies of these peaks varied

among the three experiments [13] (see figure 2, up-right-

most plot). For instance, the latency of the broader negative

peak was of 426, 492 and 535 ms for experiments 1 to 3.

This variation in latency is also visible with the r2 metric

(Fig. 2 second row). Notice how the r2 patterns of fronto-

central channels present a time shift among experiments.

Regarding the frequency analysis, Fig. 2 (third row) de-

picts the error, non-error and difference PSD averages for the

channel FCz for the three experiments. The difference aver-

ages were similar in the theta band for the three experiments

(see Figure 2 third row, fourth column). This supports the

fact that the main variation of the signals was due to latency

differences, but not to amplitude differences (as described

in [13]). The r2 discriminability patterns were in the theta

band as suggested in [10]. Notice that the r2 values were

progressively higher among experimental conditions. Despite
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Fig. 2. Electrophysiology results for experiments 1 to 3. First row shows the error, non-error and difference grand averages for channel FCz, and the
last column the difference average compared for the three experiments. Second row shows the r2 test of the temporal signals (x-axis: time, and y-axis:
channels). Third and fourth row show the PSD averages (for channel FCz) and the r2 test of the frequency signals. For each r2 plot, the squared zone
represents the window used for the extracted features.

there is not a clear reason of this increase in the r2, it could

be due to: a user habituation to the protocols (since the three

experiments were always executed in the same order from 1

to 3); or a higher cognitive workload that generated stronger

error components with greater r2 values. This increase in

separability could hinder the generalization from a more

complex experiment to a simpler one (EiEj with i > j), but

not during the opposite generalization (EiEj with i < j).

B. Classification results

Figure 3 depicts the baseline accuracies of EjEj , and

the generalization accuracies of EiEj for the temporal and

frequency feature sets, and for the concatenation of both sets

(c.f. subsection II-D), averaged for all subjects.

Regarding the temporal features, the baseline of each

experiment had high accuracies, being on average 78.78%,

77.54% and 79.04% for experiment 1 to 3. **However, when

generalizing the classifier to another experiment, the use

of these results in an accuracy degradation,** mainly due

to the latency variations observed in the electrophysiology

analysis. In fact, the mean accuracy dropped a 21.09%,

24.36% and 10.21% for the E1E2, E1E3 and E2E3 cases.

On the other hand, the use of frequency features resulted on

lower baseline accuracies than the temporal ones: 67.29%,

71.33% and 69.67% for experiments 1 to 3. However, the

accuracy drop was substantially lower when generalizing

the classifier: 3.91%, 4.52%, and 3.44% for E1E2, E1E3

and E2E3. For the baseline classifiers that use the temporal

and frequency features, the accuracies presented very similar

results to those obtained using the temporal features: 76.17%,

79.31%, and 77.64% for experiments 1 to 3. More inter-

estingly, the generalization classifiers had accuracy drops of

13.11%, 16.23% and 6.35%; but the absolute accuracies were

very similar to those obtained with the frequency features:

66.20%, 61.41%, and 71.32%, for E1E2, E1E3 and E2E3.

Thus, the use of both set of features at the same time allowed

to have the best of time and frequency domains.

These results confirmed that the temporal features had

poor task-generalization capabilities due to the latency vari-

ations. However, the frequency features generalize better

comparing the baseline and the generalization accuracies,

suggesting that these features remained similar among ex-
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Fig. 3. (Top) Baseline accuracies ± SEM (%) when training and testing with experiment j (denoted EjEj ) (Bottom) Generalization accuracies ± SEM
(%) when training with experiment i and testing with experiment j (denoted EiEj ). Dark and light colors represent the non-error and error accuracies.
Left, middle and right plots show the results when using the temporal, frequency, and combined set of features respectively. Notice that the baseline EjEj

should be compared to the generalization EiEj .

periments.

IV. CONCLUSIONS AND FUTURE WORK

An important issue in current BCI technology is to mini-

mize the calibration time as it is one of the major difficulties

especially in the context of patients. For BCIs based on

event-related potentials, re-calibration is mainly due to a time

shifts present on the potential of interest for each different

task. This paper builds on these results showing the presence

of these latency changes, and how they affect the temporal

features (EEG amplitudes) during the generalization among

different tasks (provoking large drops in the accuracies).

In addition to this, the paper showed how classifiers based

on low-frequency EEG features have better generalization

properties among different tasks (completely avoiding the re-

calibration process) than those based on temporal features.

Furthermore, the combination of features of both domains

allows to obtain classifiers with performances similar to the

temporal alone on one task, and similar to the frequency

alone in generalization (i.e the best properties of both do-

mains). As future work, the authors are studying the use of

other frequency features such as wavelets to determine their

generalization adequacy.
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