
  

  

Abstract— A brain-computer interface (BCI) translates 

brain activity into commands to control devices or software. 

Common approaches are based on visual evoked potentials 
(VEP), extracted from the electroencephalogram (EEG) during 

visual stimulation.  High information transfer rates (ITR) can 
be achieved using (i) steady-state VEP (SSVEP) or (ii) code-

modulated VEP (c-VEP). This study investigates how 
applicable such systems are for continuous control of robotic 

devices and which method performs best. Eleven healthy 

subjects steered a robot along a track using four BCI controls 
on a computer screen in combination with feedback video of 

the movement. The average time to complete the tasks was (i) 
573.43 s and (ii) 222.57 s. In a second non-continuous trial-

based validation run the maximum achievable online 
classification accuracy over all subjects was (i) 91.36 % and (ii) 

98.18 %. This results show that the c-VEP fits the needs of a 

continuous system better than the SSVEP implementation. 

I. INTRODUCTION 

A BCI is a device that provides the user a communication 
channel that bypasses the neuromuscular output pathways 
[1]. People can use a BCI to interact with their environments 
even if they have limited or no muscle control. Various data 
acquisition techniques like electroencephalography (EEG) 
[1], electrocorticography (ECoG) [2], functional magnetic 
resonance imaging (fMRI) [3] and near infrared spectroscopy 
(NIRS) [4] can be used to build a BCI system. The EEG is 
the most common brain imaging method in BCI research 
because it is inexpensive, portable, non-invasive, and has 
excellent temporal resolution [5]. However, EEG has only a 
limited spatial resolution, as each channel is influenced by 
the activation of millions of neurons, and the signal is blurred 
and filtered during passage through the scalp.  

Most BCIs rely on one of three kinds of brain signals: 
event related desynchronization (ERD) associated with 
motor-imagery, event-related potentials and steady-state 
visual evoked potentials (SSVEP) [1], [6].  

This work is focused on BCIs based on visual evoked 
potentials (VEP), which can be derived over the visual cortex 
during appropriate visual stimulation. Frequency coded 
systems use targets with different stimulation frequencies, 
where visual stimuli over 6 Hz lead to a phenomenon called 
steady-state VEP or SSVEP. In SSVEPs, the brain waves 
derived from the scalp contain enhanced spectral power 
density in the frequency range of the visual stimuli. This 
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behavior can be used to extract features for target 
identification, for example with power spectral density 
analysis [8]. The presence of higher level harmonics may 
improve the classification accuracy of a BCI system [9], [10], 
but also decreases the number of frequencies available for 
visual stimulation [7], [11].  

To facilitate a multichannel SSVEP based BCI system 
with enhanced classification accuracy and information 
transfer rate, Friman et al. introduced the minimum energy 
(ME) combination algorithm leading to an improved signal-
to-noise ratio (SNR) between the target signals compared to 
the ongoing EEG [12]. Volosyak et al. used the ME within 
the Bremen BCI and reached a mean ITR of 61.70 bits/min 
and a mean accuracy of 96.79 % [13]. An alternative type of 
stimulation is based on code sequences instead of constant 
periods and was presented in [14], [15], [16] and [17]. In the 
paper presented by Bin et al., correlation coefficients between 
trained templates and the raw EEG were used for target 
identification [14]. Therefore the canonical vector calculated 
with a canonical correlation analysis (CCA) was used as a 
spatial filter to maximize the correlation coefficients. The 
authors developed a 32 target system with a sequence length 
of 1.05 s. The resulting mean online accuracy was 85 %, 
which led to an ITR of 108 bits/min.  

In contrast to the c-VEP system in [14], we want to 
investigate, if the (i) frequency-coded (SSVEP or f-VEP) or 
the (ii) code-modulated approach (c-VEP) is more applicable 
for continuous control with on-screen stimulation to steer a 
robot in a tele-presence application. We want to determine 
whether users can continuously control a BCI while receiving 
continuous feedback based on a display overlaid on a remote 
environment. We present mean and maximum online 
accuracies of the BCI system itself, as well as the time to 
direct a robot along a certain path through a video camera.  

II. METHODS 

A. System Overview 

The complete experimental setup is shown in Fig. 1. The 
user sits in a comfortable chair in front of the computer 
screen and the BCI controls and steers a robot along a given 
route. A computer screen provides video feedback of the 
robot‟s movement via a video camera overlaid the route. This 
video system was implemented by the Technische Universität 
München (TUM) and contains a software package to 
visualize the video stream (Video-Client and Video-Server) 
coming from a camera for image recording with 60 frames 
per second. In addition the system provides four BCI controls 
(a) “turn left”, (b) “turn right”, (c) “move forward” and (d) 
“move backward”, which were presented within the video 
feedback on the computer screen. When the user looked at 
one of the controls, the BCI system (g.BCIsys) identified the 
target signal and sent the command to the e-puck robot 
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(GCtronic, Ticino, Switzerland) via Bluetooth connection 
[18].  

Another video camera was recording the movement of the 
robot which was connected to the EthoVision tracking 
system (Noldus, Wageningen, Netherlands). This allowed 
reconstructing the path and gave an additional accuracy 
measure of the system. 

Figure 1.  Experimental setup for robot control experiments. 

B. Signal Recording 

The EEG was recorded with 256 Hz sampling frequency 
using a g.USBamp biosignal amplifier (g.tec medical 
engineering GmbH, Schiedlberg, Austria) from 8 active EEG 
electrodes placed according to the international 10/20 
electrode system as shown in Fig. 2. An active reference 
electrode was placed on the right ear lobe and a passive 
ground electrode was located on the forehead. A built-in 50 
Hz Notch filter suppressed power-line interferences. 

Figure 2.  EEG montage to record VEPs. 

C. Visual Stimulation 

Fig. 4. shows the screen that was presented to the user 
during the experiment. For the on-screen stimulation in this 
work an OpenGL based runtime loadable module (BCI-
Overlay) was implemented in C++. It allows OpenGL host 

applications like the used Video-Client to embed targets for 
visual stimulation into the visualized scene. Here, four white 
targets filling a rectangular area of 3.0°x2.3° visual angle and 
flickering with 300 cd/m² luminance were presented to the 
user. 

In the frequency-coded f-VEP system, targets were 
flickering with a constant frequency of 8.57, 10, 12 and 
15 Hz, respectively.  

The code-modulated stimulation used 63bit pseudo-
random m-sequences. These binary sequences are usually 
used for non-linear signal analysis and have an 
autocorrelation function, which is an approximation of the 
unit impulse function [17]. This is very important, since the 
used features of the c-VEP configuration are based on 
correlation coefficients of shifted versions of the same 
sequence. 

Figure 3.  Interface for controlling the robot with the VEP-based BCI and 
video feedback of the track and the moving robot. 

D. Frequency-Coded BCI (f-VEP) 

Acquired EEG data was 0.5-60 Hz band-pass filtered and 
analyzed using a minimum energy (ME) approach to 
determine a spatial filter, which resulted in improved signal-
to-noise ratio (SNR) between the target signal and the 
recorded EEG. A Levinson AR Model of order 7 estimated 
the SNR based on 2 s corresponding to 512 samples, every 
200 ms. A multiclass linear discriminant analysis (LDA) is 
used to identify the target signals based on the SNR signals. 

To enable real-time classification, an offline trained 
classifier was necessary. Therefore, a 15 min training run was 
necessary including 20 trials per class or 80 trials in total. 
One trial consisted of 3 s rest and 7 s of visual stimulation. 
The user‟s gaze was directed by a cue, which was presented 
as green border around the current target. 

E. Code-Modulated BCI (c-VEP) 

The c-VEP BCI followed a template matching strategy 
that required a 3 min training run to generate a reference 
signal or template. This template consisted of 200 averaged 
m-sequences visualized in the center of the screen. Data was 
0.5-30 Hz band-pass filtered and then used within a CCA to 
find a base that maximizes the correlation between the 
template and the target EEG. The resultant spatial filter was 
then used together with the templates for online 
classification.  
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During the online experiment, the user could choose 
between four targets that showed a phase shifted version of 
the reference sequence. The system computed correlation 
coefficients between recorded EEG and the possible phase 
shifted template versions every 200 ms, based on a 2.1 s (2 
sequences) long signal buffer. Then, these correlation 
coefficients were used within a multiclass LDA, to find the 
currently selected target. 

E. Zero Class 

A zero class provided an idle state that occured when no 
target was selected by the user. Based on the LDA 
classification scores only, it was not possible to determine 
whether the user had selected any target. This entails 
rejecting any classification result for which the residual error 
probability was larger than a predefined limit. Thereby, a 
Softmax function transformed the output of the 
discrimination function into a corresponding probability that 
the chosen target was selected by the user. 

F. Experimental Procedure 

Eleven subjects aged 27.36 +/-5.84 years participated in 
all experiments (ten male and one female). All subjects were 
in good health, with normal or corrected to normal vision.  

Each subject first performed a BCI training run to set up a 
subject specific weight vector. In the next run, the on-line 
accuracy of the BCI system was tested across 20 trials using 
a green border around the BCI controls as a visual cue to 
direct the users„ gaze (the robot did not move). Next, the 
subject had to steer the robot along a given track using the 
four BCI controls and enabled zero class, to suppress 
arbitrary movement of the robot. A green border around the 
BCI controls was used as a visual feedback for the currently 
selected target. The entire track was 170 cm long and 
contained four 90° turns - two to the left and two to the right. 
The robot was moving with a speed of 2.5 cm/s. Each subject 
was told to move as accurately as possible along the track. 
Additionally, the subjects steered the robot using the 
keyboard, to see how fast and accurate persons can be with a 
conventional input device. 

III. RESULTS 

A. Online Accuracy Test 

The online accuracy test run showed that the maximum 
achievable accuracy without the zero class is 98.18 % for the 
c-VEP BCI and 91.36 % for the f-VEP BCI, respectively. 
This results from the individual performance, where each 
subject shows a trial duration, for which the accuracy gets 
maximized. For non-specific trial duration, the mean 
accuracy is 94.51 % for the c-VEP BCI and 84.18 % for the 
f-VEP BCI, as shown in Fig. 4. If the zero class is enabled, 
the accuracy reduces about 20-30 %, as the number of false 
positive classifications decreases, where the false negative 
selections increase. 

B. Robot Control 

Table 1 shows the individual task completion time of the 
subjects to steer the robot through the track. The average 
duration to finish the track with the keyboard was 94.18 s. 
The average duration was 240.45 s for the c-VEP BCI and 
477.30 s for the f-VEP BCI. However, as the grey 

highlighted subjects in Table 1 deviated more than 2 standard 
deviations from the overall mean track, we had to exclude 
them from the study to provide comparative data sets. 
Subject 7 was not able to finish the f-VEP run and had to be 
excluded too. The corrected mean duration through the track 
was 222.57 s for the c-VEP BCI and 573.43 s for the f-VEP 
BCI.  

Figure 4.  Online accuracy test run. The vertical bar indicates the start of 
flickering within one trial. The curves show the average online 

classification accuracy over 20 trials and all subjects.  

TABLE I.  ROBOT CONTROL. GREY HIGHLIGHTED RESULTS SHOWED 

MORE THAN 2 STANDARD DEVIATIONS DIFFERENCE COMPARED TO THE 

MEAN PATH. 

Subject 

Time of Movement 

Keyboard f-VEP BCI c-VEP BCI 

Time (s) Time (s) Time (s) 

1 93.00 170.00 149.00 

2 92.00 187.00 163.00 

3 97.00 426.00 194.00 

4 91.00 252.00 272.00 

5 100.00 312.00 233.00 

6 96.00 183.00 209.00 

7 99.00 - 507.00 

8 91.00 1158.00 298.00 

9 89.00 679.00 145.00 

10 97.00 1256.00 298.00 

11 91.00 150.00 177.00 

mean 94.18 477.30 240.45 

std-dev 3.56 395.42 99.71 

corrected 

mean 
93.29 573.43 222.57 

corrected 
std-dev 

3.57 431.36 64.26 
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IV. CONCLUSION 

We successfully validated two ways of a BCI based on 

VEP and showed that they could be used to continuously 

control a remote robot with workable control accuracies. The 

c-VEP BCI outperformed the other BCI configuration across 

multiple dependent measures: average accuracy, maximum 

accuracy, and completion time.  

The c-VEP BCI also seemed to reflect a shorter latency, 

as the system takes less time until classification performance 

settles (Fig. 4.). This is an important point, as the user has to 

anticipate the perfect timing to change direction. However, 

this is only possible, when the route is already known and 

nothing unexpected happens. Since the user will have to 

react in everyday life situations, the reaction time of the 

system has to be as short as possible.  

The introduced zero class allowed the user to stop the 

robot and to suppress randomized movement, which is 

absolutely necessary to stay on track. The expected side 

effect was an increased latency. 

The EEG buffer sizes affect the classification accuracy as 

well as the latency of the system. The update rate of 200 ms 

does not guarantee a short reaction time, as the features are 

based on at least 2 s signal buffers. Therefore the real update 

rate or latency highly depends on the used buffer. However, 

a shorter buffer decreases the accuracy of the BCI.  In a 

previous study we presented a comparable classification 

accuracy of 95.5 % using the f-VEP system with 3 s buffer 

size, instead of 2 s and 91.36 % in this study [19]. Therefore, 

a tradeoff has to be found between accuracy and latency, 

which is quite more critical in a continuous system 

compared to speller devices. 

Aim of further research is to improve the reaction time of 

the system, but keeping high classification accuracy.  
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