
  

  

Abstract—New reinforcement based paradigms for building 

adaptive decoders for Brain-Machine Interfaces involve using 

feedback directly from the brain. In this work, we investigated 

neuromodulation in the Nucleus Accumbens (reward center) 

during a multi-target reaching task and investigated how to 

extract a reinforcing or non-reinforcing signal that could be 

used to adapt a BMI decoder. One of the challenges in brain-

driven adaptation is how to translate biological 

neuromodulation into a single binary signal from the 

distributed representation of the neural population, which may 

encode many aspects of reward. 

To extract these signals, feature analysis and clustering were 

used to identify timing and coding properties of a user’s 

neuromodulation related to reward perception. First, Principal 

Component Analysis (PCA) of reward related neural signals 

was used to extract variance in the firing and the optimum time 

correlation between the neural signal and the reward phase of 

the task. Next, k-means clustering was used to separate data 

into two classes. 

I. INTRODUCTION 

Brain-Machine Interfaces (BMIs) have shown great 
potential to restore movement function for amputees and for 
people living with paralysis through the control of external 
devices or through functional electrode stimulation (FES) [1-
5]. The design of neural decoders to translate brain activity 
into behavior is typically trained in a supervised manner with 
either real or inferred kinematic signals. In cases of severe 
paralysis or amputation, it may not be possible to collect 
these signals as a desired response. Therefore, there is a need 
to develop other methods of acquiring training signals and 
using them to adapt neural decoders. 

As an alternative to supervised learning which is being 
tested in subjects living with paralysis [6, 7], Reinforcement 
Learning (RL) provides a method of biological and 
computational learning that does not depend on specific 
known outcomes but rather performance outcomes. [8, 9]. 
Using this approach, we have developed a new method of 
decoding that is based on actor-critic RL [10-12].  In this 
approach, the actor is driven by motor neural inputs and 
translates them into behavioral actions. The role of the critic 
is to adapt the actor based on experience. The only feedback 
the critic should provide is the appropriateness or the value of 
the chosen action; in this case if the action selected was 
correct or incorrect. This feedback signal can be obtained by 
the external environment or from the brain itself. 

 
* This work was supported by DARPA REPAIR project N66001-10-C-

2008. 

N. W. Prins, S. Geng, E. A. Pohlmeyer, B. Mahmoudi, and J. C. Sanchez  

are with the Department of Biomedical Engineering, University of Miami, 

Coral Gables, FL 33146 USA (e-mail: jcsanchez@miami.edu). 

Obtaining reward information from the brain has a variety 
of challenges associated with it. Much research has gone into 
identifying reward centers in the brain [13-15]. Of these 
centers, the Nucleus Accumbens (NAcc) is a main 
component in the ventral striatum and plays a key role in the 
linking of reward to motor behavior [16]. If signals from this 
structure are to be used to adapt BMI decoders, a first step is 
to determine how to preprocess and extract reward signals 
from it.  

The nature of neural representation, especially reward 
activation, is complex. The timing, type, magnitude, and 
expectation of reward can also affect the related 
neuromodulaton [14]. For RLBMIs, three main aspects of 
reward are important: differentiation between rewarding and 
non-rewarding targets, the timing of modulation related to 
these conditions, and how to extract features in the neuronal 
firing that signal these conditions [15, 17, 18]. In this work, 
we seek to investigate preprocessing methodologies for 
extracting reward signals from NAcc for BMIs. The approach 
is to identify major modes of variance through Principal 
Component Analysis (PCA), reduce dimensionality, and 
extract relevant features related to reward. Once the modes 
are identified an unsupervised method is applied to identify 
rewarding and non-rewarding neural activation.  

II. METHODOLOGY 

A. Neural Recordings 

Neural data was acquired while a marmoset monkey 
(Callithrix jacchus) was interacting with a robot in a two-
choice decision task. To access deep brain reward signals, a 
16-channel tungsten microelectrode array, (Tucker Davis 
Technologies, FL) was surgically implanted in ventral 
striatum targeting the NAcc under isoflurane anesthesia and 
sterile conditions. All surgical and animal care procedures 
were consistent with the National Research Council Guide 
for the Care and Use of Laboratory Animals and were 
approved by the University of Miami Institutional Animal 
Care and Use Committee. 

Neural recordings were sampled at 24,414Hz using 
Tucker Davis Technologies RZ2 system. Spike sorting of 
neuronal signals was performed in real-time based on the 
shape and amplitude of action potential waveforms and using 
manually set threshold levels. Both multiunit as well as single 
unit neurons were recorded and used equivalently in all 
applications. Multiunit signals and single unit signals 
collectively are referred to here as neuronal signals. During 
the real-time experiment, 29 neuronal signals from NAcc 
were isolated and recorded.  
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B. Experimental task 

The task studied here was a two-choice decision making 
task. The monkey was trained to move a robot arm to one of 
two targets to receive a food reward (Figure 1 ). 

The monkey initiated trials by placing its hand on a 
touchpad for a random (700-1200msec) hold period. At the 
onset of the trial, an audio go signal was provided that 
corresponded to a robot arm moving upwards, out from 
behind an opaque shield, and presenting its gripper. The 
gripper held either a desirable (waxworm or marshmallow, 
'A' trials) or undesirable (wooden bead, 'B' trials) object. 
Simultaneously, the A (red) or B (green) spatial target LED 
corresponding to the type of object in the gripper was 
illuminated. 

Each type of trial required a different action; for A trials, 
the monkey had to reach a second sensor within 2 second 
reach time limit and the robot would move to A target; for B 
trials, it was required to keep its hand motionless on the 
touchpad for 2.5 seconds and the robot would move to B 
target. For both A and B trials, if the robot moved to the 
target indicated by the LED, the monkey was given a food 
reward. Trials where the animal either did the wrong action 
or was not interacting with the task were removed from the 
analysis. 

To create robot perturbations that contrast with reward 
trials, the robot was occasionally overridden and moved in 
the direction opposite to that of the action commanded by the 
monkey. These trials where the monkey sees an undesirable 
action in the environment (evoking negative response in the 
brain) were considered 'catch' trials. There were 24% and 
35% catch trials for A and B trials respectively. The trials 
where the robot moved to the intended target and the animal 
received a food rewards were called 'standard' trials. 

(a) (b) (c) (d) 

Figure I 'A' trials: (a) Animal initiates trial (b) Robot comes out from 
opaque screen and reveals gripper, target LED lights come on, second 

sensor light comes on (c) Animal makes arm movement and triggers second 
sensor (d) Robot moves to target 'A'. 

C. Feature Analysis 

A and B trials were considered separately for this 
analysis. The purpose was to separate the standard trials from 
catch trials. Figure 2 shows a timeline of a trial. All analysis 
was performed relative to the beginning of the robot 
movement (RM) time (which began when the second sensor 
was triggered in A trials or at the end of the hold period in B 
trials). 

The analysis done was using a 0.5 second sliding window 
(0.1 second overlap) with the sum of firing rate within the 
given window of each of the 29 neuronal signals as the 
feature space. This goal was to find the optimal window that 

correlated with the robot moving to or away from the desired 
target. 

Next, PCA was used for feature analysis. PCA is a widely 
used technique in neuroscience because it can exploit the 
high variance of neural data [19-21]. PCA also gives the 
direction of maximal variance, which helps in extracting 
relevant features and in dimensionality reduction, which is 
helpful in BMI applications. 
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Figure 2 Timeline for the trial (in black). Red shows the 0.5sec window that 
was focused on for classifying standard and catch trials from the NAcc (0.2-

0. 7sec after RM) 

D. Clustering and Labeling of PCA Data 

After features were extracted using PCA, the signals then 
needed to be classified into reinforcing and non-reinforcing 
classes. k-means clustering, an unsupervised method, was 
used for clustering the data. The only prior knowledge 
required was the number of clusters. In this application the 
number of clusters is already known to be two (reinforcing or 
non-reinforcing). 

k-means is used to classify n objects of input space 
I {i1 i2 ... in}, each having measurements on p variables 
ij { xj1 xj2 ... xjp }, into k clusters with cluster centroid 
C ( c1 c2 ... ck). In this case, n = number of trials, p = number 
of principal components used and k=2. The algorithm was set 
to start by setting C to an initial value (randomly picked 
from I). The centroid value for cluster ck is given by: 

nk 

ck= _.!._ L ij; 'if ij{xj1xj2 ... xjp}Eck 
nk j=l 

where nkis the number of objects ink. 

Next, clustering is done based on minimizing the cost 
function which is a measure of the distance between each 

data point and the centroid. Three different cost functions 
were used: squared Euclidean distance, sum of absolute 
differences and one minus the cosine of the included angle 
between points (treated as vectors). The results are of squared 
Euclidean distance are presented as the clusters aligned better 
with this criterion. 

For each iiE /,the squared Euclidean distance (d) between 
ii and its centroid, ck was calculated. 

d(ii, ck)= (ii - ck) 2
; 'if ii{xi 1xi 2 ... xip}Eck,j = 1,2 ... n 

The objects of I were moved to the cluster whose centroid 
was closest, until d was minimum [22]. 
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The two clusters obtained from k-means clustering were 
assigned labels (standard and catch) manually and compared 
against the class labels standard ('+') and catch ('o') 
categories in the experiment. The classification accuracy was 
the number of trials correctly classified (True Positive+ True 
Negative) out of the total number of trials. 

III. RESULTS 

Recordings of 3 consecutive sessions were analyzed 
individually (Sl,S2,S3). We also aggregated the sessions 
together (Sl +S2+S3) to see if there was consistency among 
the sessions and also to have a higher number of trials. 

A. PCA Analysis of Variance 

For all the sessions analyzed, the first 9 and 15 principal 
components accounted for at least 80% and 90% of the 
variance respectively (Figure 3). After the data was converted 
using PCA, all combinations of the first 7 principal 
components were plotted and inspected. The first two 
principal components contained 48% of the variance and 
showed best separability. Hence, the first 2 principal 
components were selected as the features for analysis. 
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Figure 3 Variance of data relative to RM. Red: 'A' trials. Green: 'B' trials. 
Window 0.2-0.7sec (SI +S2+S3) 

B. Unsupervised Clustering 

The data projections for the first and second principal 
components of the two different trial types (A and B) were 
used for clustering. k-means was used to partition the PC 
space into two clusters as seen Figure 4 and Figure 5 (blue 
and yellow Voronoi diagrams). Next we labeled the trials,'+' 
for standard and 'o' for catch, and compared the k-means 
classes against the labels and calculated the resulting 
classification accuracy. 

PCA and k-means analysis of the NAcc firing revealed a 
difference in the separability between standard and catch 
trails for the A and B trials. More overlap in the neural 
representation and clustering was observed for A trials. 

Figure 4 and Figure 5 show the clustering for a time 
widow of 0.2-0.7 sec time following RM, which gave a 
classification accuracy of 64.1% and 87.5% for A and B 
trials, respectively (Sl +S2+S3). Other time windows (0-0.5, 
0.1-0.6, 0.3-0.8, 0.4-0.9 and 0.5-1 sec) were tested as well, 
with 0.1-0.6 sec and 0.2-0.7 sec showing the greatest 
separability. Table-I gives the differences in clustering 
performance, PCA representation and timing. The highest 
classification forthe 0.1-0.6 sec window was 81% and 90.5% 

for A (S2) and B (S3) trials respectively. For the 0.2-0.7 
window it was 90.5% for A trials (S2) and 85.7% for B trials 
(S3). This difference could be due to variance of the neuronal 
signals from each session. The baseline for the trials was the 
window 0.5-0 sec prior to the go signal where the animal was 
initiating the trial. The PCA showed no pattern between the 
two categories and performance ofk-means clustering was at 
chance (55.5% for both A and B trials). 
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Figure 4 Data clustered in PC space using k-means for 'A' trials. Blue: 
Cluster I. Yellow: Cluster 2. '+':standard. 'o': catch aud@: cluster centers. 

Window 0.2-0.7sec 
8,------~----~----cn---C-lu-st-er_l_4 

6 -c 
~ 4 
0 
c.. 
E 2 
0 
0 
ro a 
c.. ·c::; 
c -2 

·;:: 
Cl. 
-c -4 
c 
N 

-6 

--~O 

+ 

• 
0 

Cluster 2 
® Centroid 
+ B Standard 
O B Catch 

+ + 
000 

°" ® 0 00 

+ 
+ + 

+ 
+ 

• •• +. + • 
•+ 

+ • 

+ +• 
+ + 

+ + 

+ 

-5 0 5 

+ 

1st Principal Component 
10 

Figure 5 Data clustered in PC space using k-means for 'B' trials. Blue: 
Cluster I. Yellow: Cluster 2. '+':standard. 'o': catch aud@: cluster centers. 

Window 0.2-0.7sec 

TABLE I. OVERALL ACCURACY OF CLUSTERING USING K-MEANS" 
FOR DIFFERENT WINDOW SIZES RELATIVE TO THE RM 

0.1-0.6sec window 0.2-0. 7sec window 

'A' trials 'B' trials 'A' trials 'B' trials 

Sl 59.3% 66.7% 63.0% 57.1% 
S2 81.0% 73.3% 90.5% 83.3% 
S3 53.3% 90.5% 80.0% 85.7% 

Sl +S2+S3 66.7% 58.3% 64.1% 87.5% 

a. Criterion: minimize squared Euclidean distance. 
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IV. DISCUSSION 

The purpose of this paper was to find reward 
representation in the NAcc for the application in 
reinforcement based decoders in BMI. At present we have 
developed and used an actor critic decoding paradigm that 
uses an ideal feedback or feedback from the environment to 
control a robot arm for a two-choice task [10-12].  The next 
step is to incorporate the methods in this paper to give a 
processed biological signal as the feedback.  

As a first step to process this biological signal, we tested 
the separability of NAcc data by projecting to the first two 
principal components. We also tested the separability by 
adding the third principal component. The performance did 
not significantly increase and in some cases, it was reduced 
beyond that of two principal components. We concluded that 
two principal components were sufficient for this basic task. 

The next step to process this biological signal was to 
separate the data into two clusters. The k-means algorithm 
was used for this purpose. It is a basic unsupervised 
clustering method which required only a few iterations (<10). 
Another advantage of the approach is that it is fully 
unsupervised and can be applied to natural environments 
where no a priori knowledge is known about the targets. 
However, it has several disadvantages: it cannot handle 
outliers or deal with overlapping clusters, the clustering is 
locally minimum and increasing the number of clusters will 
reduce the training error within a cluster [22].  

The cost function used in k-means will affect the 
performance of the clustering. Even though qualitatively, we 
observed separation in the standard (‘+’) and catch (‘o’) 
categories which indicated there was a difference in the 
neuromodulation for the two conditions. But since k-means is 
a clustering algorithm and not a classifier, it is only interested 
in optimizing with respect to the distance, not inaccuracies in 
labeling. When we compared the clusters given by k-means 
to the standard (‘+’) and catch (‘o’) categories, we saw that 
the k-means did not represent the standard and catch 
categories as accurately for A trials compared to B trials as 
there was more overlap in A trials. This suggests that the 
criterion used (squared Euclidean distance) may not be the 
best for the information required. The separation of 
classification could be improved with advanced supervised 
techniques and we may be able to get higher accuracies 
however the tradeoff is the need for supervision. 
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