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Abstract— A method for real-time noninvasive estimation of
intrapleural pressure in mechanically ventilated patients is pro-
posed. The method employs a simple first-order lung mechanics
model that is fitted in real-time to flow and pressure signals
acquired non-invasively at the opening of the patient airways,
in order to estimate lung resistance (RL), lung compliance (CL)
and intrapleural pressure (Ppl) continuously in time. Estimation
is achieved by minimizing the sum of squared residuals between
measured and model predicted airway pressure using a mod-
ified Recursive Least Squares (RLS) approach. Particularly,
two different RLS algorithms, namely the conventional RLS
with Exponential Forgetting (EF-RLS) and the RLS with
Vector-type Forgetting Factor (VFF-RLS), are considered in
this study and their performances are first evaluated using
simulated data. Simulations suggest that the conventional EF-
RLS algorithm is not suitable for our purposes, whereas the
VFF-RLS method provides satisfactory results. The potential
of the VFF-RLS based method is then proved on experimental
data collected from a mechanically ventilated pig. Results show
that the method provides continuous estimated lung resistance
and compliance in normal physiological ranges and pleural
pressure in good agreement with invasive esophageal pressure
measurements.

I. INTRODUCTION

Monitoring of intrapleural pressure (Ppl) in actively

breathing ventilated patients provide instantaneous informa-

tion on patients’ efforts during spontaneous and machine-

aided breaths. Several indices that reflect patients’ energy

expenditure while breathing, such as Pressure-Time Product

(PT product) or Work of Breathing (WOB), can be derived

from intrapleural pressure [1]. Moreover, Ppl is required to

compute transpulmonary pressure, the latter being essential

to ensure optimal lung protective ventilation strategies and

avoid over-distention of the lungs.

Direct measurement of intrapleural pressure (pleural

manometry) requires an invasive procedure to place needles,

catheters, or transducers. The risk of infection and other

complications makes this approach unattractive in the clinical

setting. For this reason, the pressure into the esophagus (Pes)

is typically used as a surrogate of Ppl, with the esophageal

balloon technique being the most popular method for Pes
measurement. This technique, however, not only requires
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the patient to swallow a balloon-tipped catheter, but it also

requires expert operators for correct placement and inflation

of the balloon, special equipment and particular attention to

avoid errors and artifacts [2]. These drawbacks have limited

the use of esophageal manometry as a way of monitoring

Ppl and have prevented its adoption into standard clinical

practice. A real-time, continuous and noninvasive way to esti-

mate intrapleural pressure in mechanically ventilated patients

would hence be highly desirable.

In the present work we propose to estimate Ppl using

a first-order lung mechanics model and a modified Re-

cursive Least Squares (RLS) approach that fits the model

in real-time to flow and pressure signals measured non-

invasively at the airway opening of the patient. The first-order

lung mechanics model and RLS algorithm with exponential

forgetting (EF) have been extensively applied for on-line

parameter estimation of lung mechanics in both human

and animal studies in the last decades [3]–[8]. However,

in all the previous studies, intrapleural pressure was never

considered as one of the model’s parameters to be estimated.

The goal was to achieve tracking of the time-varying lung

resistance and compliance using a surrogate measurement

of Ppl, typically esophageal or central venous pressure, as

input to the parameter estimation algorithm. The purpose of

the present study is to investigate if the use of the simple

first-order lung mechanics model and the RLS technique can

be extended to real-time estimation of intrapleural pressure,

in addition to lung resistance and compliance, in actively

breathing mechanically ventilated patients.

II. METHODS

A. The Lung Mechanics Model

Several lumped-parameter models have been proposed

in the past to represent breathing mechanics. These mod-

els range from the simple first order resistance-compliance

model to higher-order models that account for inhomogeneity

of the lungs. Attempts to use high-order models have not

provided satisfactory results [3] because the performances of

recursive algorithms for online parameter estimation sharply

deteriorate as the number of parameters increases [9]. For

this reason, the first order single-compartment model, whose

electrical analogue is shown in Fig. 1, has been chosen

for this study. In this model, the resistive properties of

the conductive airways and the viscosity of the lung tis-

sue are lumped into a single resistance (RL), whereas the

elastic properties of the lungs are described by a single

compliance (CL). The lung is surrounded by the pleural

space, represented as a pressure source (Ppl). When the
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Fig. 1. Electrical analog of the single-compartment lung mechanics model.
Pao, airway pressure; RL, lung resistance; PA, alveolar pressure; CL, lung
compliance; Ppl, intrapleural pressure.

patient is under mechanical ventilation, the pressure at the

airway opening (Pao) depends on a balance between the

intrapleural pressure, the pressure across the compliance

(elastic recoil pressure) and the pressure drop across the

resistance (resistive pressure). The mathematical equation

describing the model, known as “equation of motion of the

lung”, is then:

Pao (t) = RL (t) V̇ (t) +
1

CL (t)
V (t) + Ppl (t) + P0 (1)

where V̇ is the air flow, V is the lung volume above

functional residual capacity (FRC) and P0 is a constant added

to account for the fact that at FRC, when both the resistive

and elastic pressure terms in (1) are zero, Pao is not equal

to Ppl.

B. The Parameter Estimation Algorithm

Using continuous measurements of airway pressure Pao(t)
and flow V̇ (t) (from which, the volume V (t) can be com-

puted by numerical integration), (1) has been extensively

applied to assess lung mechanics in both human and animal

studies [3], [5], [8]. In these studies, surrogate measurements

of Ppl were also used to compute transpulmonary pressure

Ptp = Pao − Ppl and recast (1) into a standard linear

regression problem:

y(t) ≡ Ptp(t) =

[

RL(t)
1

CL(t)
P0

]

︸ ︷︷ ︸

θT (t)







V̇ (t)

V (t)

1







︸ ︷︷ ︸

x(t)

(2)

where x(t) is the vector containing the input variables,

y(t) is the output variable and θ(t) is the parameter vector

containing the unknown parameters RL(t), CL(t) and P0.

Note that, when trying to fit (2) to experimental data, an extra

term w(t) needs to be considered to model the presence of

process as well as measurement error:

y(t) = θT (t) x(t) + w(t) (3)

For on-line applications, the classical RLS algorithm with

EF has been advocated to achieve continuous estimate of the

time-varying parameter vector θ̂(t), according to the general

scheme:

θ̂(t) = θ̂(t− 1) +G(t)no(t) (4)

no(t) = y(t)− θ̂
T (t− 1)x(t) (5)

G(t) =
P (t− 1)x(t)

λ+ xT (t)P (t− 1)x(t)
(6)

P (t) =

[
I−G(t)xT (t)

]
P (t− 1)

λ
(7)

where n0(t) is the a priori model prediction error, G(t) is

the algorithm gain vector, P (t) is a matrix proportional to

the parameter covariance matrix, I is the identity matrix and

λ is a number between 0 and 1 commonly referred to as

the “forgetting factor” (or design variable). The choice of

the forgetting factor is critical as it determines the memory

of the estimation procedure by defining the effective number

and weight of past data points to which the model is being

fitted. Small values of λ reduce the memory of the algorithm,

thus allowing for tracking of rapid parameter variations but

result in high noise sensitivity. On the other hand, higher

values of λ provide better filtering of the noise but reduce

the algorithm alertness. Hence, when choosing the value of λ,

a trade-off between noise sensitivity and tracking capability

must be sought.

In the present work, we propose to use (1) and extend

the above RLS technique such that Ppl(t), instead of being

measured (or inferred), becomes one of the parameters to

be estimated in addition to RL(t) and CL(t). A more

challenging task since in order to recast (1) into a linear

regression problem, the constant P0 in (2) is substituted by

a time-varying term P0
*(t):

y(t) ≡ Pao(t) =

[

RL(t)
1

CL(t)
P0

*(t)

]

︸ ︷︷ ︸

θT (t)







V̇ (t)

V (t)

1







︸ ︷︷ ︸

x(t)

(8)

where, in comparison to (2), the output variable y(t) is no

longer Ptp(t), and the third component of the parameter

vector P0
*(t) now includes the constant term P0 plus the

time-varying term Ppl(t). Hence, by estimating P0
*(t), we

are actually estimating Ppl(t) plus an offset term whose value

can be obtained by evaluating (1) at the end of exhalation.

Namely,

P0 = Pao (tEE)− Ppl (tEE) = PEEP − Ppl (tEE) (9)

where PEEP is the positive end-expiratory pressure value

and tEE is the end-expiratory time instant. Substituting P0
back into P0

*(t) yields:

Ppl (t)− Ppl (tEE) = P0
*(t)− PEEP (10)

which means that by estimating P0
*(t) and knowing PEEP

we only obtain an estimate of the intrapleural pressure

variations with respect to its baseline value. Note that this

does not constitute a limitation of the proposed method, as
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in order to asses patients’ breathing effort the baseline value

of Ppl is not required. Keeping this in mind, for simplicity, it

will be assumed in the remaining part of the paper that the

result of the estimation algorithm is an estimate of Ppl(t)
directly, neglecting the presence of the offset term P0.

The problem we are trying to solve is hence estimating the

parameter vector θ, which contains 3 time-varying parame-

ters: Ppl(t), RL(t) and CL(t). Among these, Ppl is certainly

varying at a much different rate than the other two. RL and

CL have indeed slower intra-breath variability compared to

Ppl. It is well known in the literature that the conventional

RLS with exponential forgetting (EF-RLS) is not suitable

when the parameters to be estimated have different temporal

variation rates. Using a single scalar forgetting factor λ

the algorithm applies forgetting equally over the whole

parameter space. As a result, if there is a drift in one of

the parameters, the same correction will be applied to all

parameters, a fact that leads to overshoot or undershoot in the

estimates when the parameters change at different rates. In

these cases, a modification of the general RLS scheme, where

the covariance matrix is scaled using a diagonal matrix with

different forgetting factors corresponding to the parameters

being estimated, can be more effective. This concept has

already been proposed in the literature under different names

[10]–[12], but to our knowledge has never been applied

to lung mechanics studies. The proposed modified RLS

algorithm, which in the following will be referred to as

RLS with Vector-Type Forgetting Factor (VFF-RLS), is very

similar to the general scheme in (4-7) and takes the following

form:

θ̂(t) = θ̂(t− 1) +G(t)no(t) (11)

no(t) = y(t)− θ̂
T (t− 1)x(t) (12)

G(t) =
P (t− 1)x(t)

1 + xT (t)P (t− 1)x(t)
(13)

P (t) = Λ−1
(
I−G(t)xT (t)

)
P (t− 1)Λ−1 (14)

where Λ is the diagonal matrix that scales the covariance

matrix P (t) and contains the different forgetting factors:

Λ = diag
[√
λ1
√
λ2
√
λ3
]

(15)

In the next section, we will show first via simulation studies

how the performances of the VFF-RLS algorithm are su-

perior to those of the conventional RLS with EF. Finally,

the potential of the proposed method will be proven using

experimental data collected from a pig under mechanical

ventilation.

C. Animal Experiment

Preliminary results of our proposed technique have been

obtained using experimental data collected during an ani-

mal test performed at the Pulmonary Research and Animal

Laboratory of Duke University Medical Center on a 30 Kg

adult male pig. The experimental protocol was approved

by the local institutional committee. The pig was anaes-

thetized, intubated and connected to an Esprit ventilator

with NM3 respiratory monitor (Philips-Respironics). Airway

pressure and flow were measured at the Y-piece, between

the breathing circuit and the endotracheal tube. The pressure

inside the esophagus was measured using an esophageal bal-

loon connected to a differential pressure transducer (Model

PS309D, Validyne Engineering, Northridge, CA). Occlusion

test was performed to assess the correct positioning of

the balloon as described in [2]. Data were acquired and

collected at 100Hz using a dedicated system for real-time

data acquisition and computation. The test was performed for

approximately 7 hours, during which the pig was subject to

different ventilator modes and maneuvers. When the pig was

completely anaesthetized, pressure control ventilation (PCV)

and volume control ventilation (VCV) in assist/control (A/C)

mode were used. When the effects of the anesthetics were

vanishing, the ventilator was switched to continuous positive

airways pressure (CPAP) with variable levels of pressure

support (PSV).

III. RESULTS AND DISCUSSION

The feasibility of the proposed method was investigated

via a two-stage process. In the first stage, we evaluated the

performance of both the conventional EF-RLS and modified

VFF-RLS estimation algorithms on simulated data. In the

second stage, we evaluated the performance of the VFF-RLS

algorithm on the real animal data.

A. Algorithm evaluation on simulated data - Stage 1

A simulated airway pressure signal P̃ao was first generated

by solving (1) and using the experimental flow (V̇ ) and

esophageal pressure (Pes) collected during the animal test

(Pes was used in place of Ppl and the volume V was

obtained by numerical integration of the flow waveform).

While solving (1) for P̃ao, the values of RL, CL and P0
were kept constant and fixed to 10 cmH2O

L/s
, 0.08 L

cmH2O
and

5 cmH2O, respectively. The RLS estimation algorithm (EF

or VFF) was then run according to (4-7) or (11-14), using

the experimental V̇ and V to construct the input vector,

x(t), and the simulated P̃ao as output variable, y(t). The

resulting estimated time-varying parameters (R̂L, ĈL and

P̂pl) were finally compared with their respective true values.

Note that this simulation approach is equivalent to assuming

that the model fits the data perfectly without the presence of

process or measurements noise. Since we want the estimation

algorithm to cope with drastic variations in pleural pressure,

we used as our input dataset a portion of data related to

a transition between high level to low level of ventilator

support. Particularly, we choose a 2-minute window (see

Fig. 2) during which the pig was subject to CPAP with

PSV level from 10 to 0 cmH2O. As shown in Fig. 2 (see

red line), when the PSV level is reduced, the shape of the

esophageal pressure changes drastically due to the increase in

the respiratory effort as dictated by the absence of ventilator

support and reflected by negative deflections in Pes with

respect to its baseline value.

The results of the RLS with scalar EF on the above

mentioned dataset are shown in Fig. 3. The value of the

5213



forgetting factor was set to 0.95, which is in the range of

values typically used in the literature. The parameter vector θ

was initialized to 0, assuming that no prior knowledge about

the true parameter values is available, and the covariance

matrix P was initialized to 106·I to reflect the low confidence

in the initial parameter guess. To quantitatively assess how

well the model fits the data, the coefficient of determination

(CD) was computed as:

CD = 1−
SSR

∑

i (y(i)− y)
2

(16)

where y represents the mean value of the real output variable

and SSR is the sum of squared residuals between the real

output, y(t), and the model predicted output, ŷ(t). Results

(Fig. 3) show that despite the small amplitude in the residu-

als, and hence the high value of CD (0.9771), large breath-

by-breath fluctuations in R̂L and ĈL and poor matching

of the Ppl waveform are obtained. Further tuning of the

forgetting factor did not improve the results: it was observed

that by decreasing λ, the accuracy of the fit improved and

hence the value of CD increased, but at the same time the

level of fluctuation in the parameter estimates also increased.

As mentioned in the Methods section, we believe that the

poor performance of the RLS with EF is essentially due

to the inadequacy of the estimation algorithm to cope with

parameters that change at different rates.

On the other hand, the results of the VFF-RLS algorithm

on the same dataset, shown in Fig. 4, clearly prove the

superior performances of the modified RLS algorithm. The

coefficient of determination is still high (CD=0.9762) , the

amplitude of the residuals is comparable with the results

obtained using the conventional EF-RLS algorithm, but the

large variations in the estimated resistance and compliance

that characterize the results of the previous algorithm are

no longer present. Furthermore, small biases in R̂L and

ĈL, compared to their true values, and good matching of

the pleural pressure signal are observed. The values of the

different forgetting factors λi were chosen in order to main-

tain small residuals and keeping in mind that the parameters

that change the most need to be assigned smaller forgetting

factors. Particularly, the results in Fig. 4 were obtained using

λ1=0.9999, λ2=0.9999 and λ3=0.85. They show that the

introduction of the diagonal matrix Λ in the RLS formulation

allows for tracking of parameters that change at different

rates and, more importantly, of a highly time-varying signal

such as Ppl.

B. Algorithm evaluation on real data - Stage 2

The performances of the VFF-RLS algorithm were finally

evaluated on the real data without using the simulation

approach described in the previous section. In this case, the

experimental airway pressure signal (Pao) was used as output

for the estimation algorithm, flow (V̇ ) and volume (V ) were

used as input and the resulting estimated pleural pressure

signal (P̂pl) was compared to the esophageal pressure mea-

surements (Pes) collected during the animal test. To account

for the presence of the offset in the estimated Ppl signal

Fig. 2. Flow and esophageal pressure data used to test the estimation
algorithm.
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Fig. 3. Stage 1 results: EF-RLS algorithm on simulated data. Estimation
residuals (Res) are shown in the top plot. Estimated (blue continuous line)
versus actual (red dotted line) parameters are shown in the remaining bottom
plots.
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Fig. 4. Stage 1 results: VFF-RLS algorithm on simulated data. Estimation
residuals (Res) are shown in the top plot. Estimated (blue continuous line)
versus actual (red dotted line) parameters are shown in the remaining bottom
plots.

(see Methods section), the baseline value was subtracted

from Pes. The forgetting factors λi were given the same

values used in the simulation study. Results related to the

same dataset considered in the previous section are shown
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in Fig. 5. Compared to the results from the simulation study,

the residuals appear to be more deterministic, reflecting the

fact that the error term w(t) in (3) is not simple white noise.

This contradicts the general Least Square assumptions and

suggests that the simple first-order lung mechanics model is

not able to explain the data very accurately. This is certainly

due to the simplicity of the model and the fact that the

real lungs are far from being a simple resistance-compliance

model. Nevertheless, the coefficient of determination is still

high (CD=0.9716) and the estimated parameters appear to

make sense. Particularly, the estimated RL and CL converge

over time to values within the normal physiological ranges

and, more importantly, the estimated Ppl signal matches quite

well the experimental esophageal measurements, even when

the transition in the PSV level changes the shape of the real

signal. The accuracy of the proposed algorithm in tracking

the pleural pressure signal is reflected by the low value of

Root Mean Square Error (RMSE) between the estimated

Ppl and the experimental Pes: RMSE=0.8904 cmH2O, cor-

responding to 8.7% of the range of the measured signal.
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Fig. 5. Stage 2 results: VFF-RLS algorithm on real data. Estimation
residuals (Res) are shown in the top plot. Estimated lung resistance and
compliance are shown in the middle plots. Estimated Ppl (blue continuous
line) versus measured Pes (red dotted line) is shown in the bottom plot.

IV. CONCLUSION

The results of this study suggest that a simple first order

lung mechanics model with RLS technique can achieve

simultaneous estimation of intrapleural pressure, lung re-

sistance and lung compliance in mechanically ventilated

patients, provided airway pressure and flow are available.

These are routinely monitored non-invasively when using a

ventilator. Hence, our findings demonstrate the feasibility of

a novel method for continuous real-time noninvasive esti-

mation of intrapleural pressure without requiring additional

instrumentation.

The superiority of the VFF-RLS algorithm, against the

conventional EF-RLS algorithm, was proven via a two-stage

validation process performed using simulated and real animal

data.

However, despite these promising preliminary results, sev-

eral limitations exist and will be object of further investi-

gation. First, the estimation algorithm is very sensitive to

the value of the forgetting factors. Optimal values for λi
have been selected by trial and error for the specific dataset

used in this study and this does not guarantee the algorithm

giving satisfactory results on different datasets. Furthermore,

the results presented pertained only to one dataset, obtained

from a single animal under specific ventilator mode and

settings. Hence, the performance of the algorithm will need

to be evaluated on multiple datasets from multiple subjects

(animals or humans) spanning a wider variety of ventilator

modes and settings. Also, changing the initial conditions

of the parameter vector θ and covariance matrix P will

change the convergent behaviour of the estimation algorithm.

A rigorous sensitivity analysis need be performed in order

to quantify the effects of these design variables on the

estimator’s performance. Finally, it would be interesting to

evaluate the capability of the algorithm not only to track the

fast variations of Ppl but slower changes in RL and CL as

well. To this end, further animal testing using techniques to

alter the mechanical properties of the lung in a predictable

way during the experiment (such as saline washing and

methacoline/histamine challenges) is envisioned.
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