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Abstract—Compressed sensing (CS) has demonstrated great 

potential to reconstruct high quality MR images from 

undersampled k-space data. However, successful application of 

CS in clinic is still limited by many factors. One of the key factors 

is that the noise behavior in CS reconstructions remains largely 

unexplored. The main objective of this work is to analyze the 

noise behavior of MR reconstructions using CS method with 

different reduction factors. Our work focuses on brain CS-MRI 

reconstructions using non-linear conjugate gradient (NLCG) 

solvers. After reconstruction, the noise behavior is characterized 

using the MP-Law method. The results show that the spatial 

noise distributed non-uniformly, and the noise variance from CS 

reconstruction increases with reduction factors. A kind of fitting 

model is given, which can be used to predict the noise behavior 

parameter for different reduction factors, and the noise 

amplification factor maps are shown to prove the denoising 

capability of CS reconstruction. The results provide a qualitative 

and quantitative understanding of the noise behavior in CS-MRI 

with different reduction factors. 

 

I. INTRODUCTION 

Image quality is a prime consideration in the design, 

manufacture and operational management of diagnostic 

imaging system. Signal to noise (SNR) [1], one key image 

quality determinant, is a frequently used metric as the 

assessment standard of imaging techniques, image 

reconstruction methods and imaging sequence [2] in Magnetic 

Resonance Image (MRI). The poor SNR MR image may bring 

down the credibility of diagnosis results and lead to 

misdiagnosis. The key of calculating SNR is to find the noise 

behavior of image precisely. However, getting meaningful and 

precise noise measurements is challenging [1-2]. 

 

Among today’s many clinical imaging techniques, MRI 

has a number of advantages, such as multi-parameter imaging 

and harmless to human body. However, the speed at which 
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data can be collected in MRI is fundamentally limited by 

physical and physiological constraints [3-4]. Therefore, how 

to improve the imaging speed without degrading the image 

quality has been becoming the main driving force and core 

issue to promote the development of MRI technology. A 

wide-variety of strategies for accelerating MRI scan have been 

reported, many of which involve reducing the number of 

acquired k-space samples [5].  

 

Early practice is to use one excitation acquisition sequence 

of the multiple rows of phase encoding to improve MR 

imaging speed, such as Echo Planar Imaging (EPI) [6], 

Steady-state Free Precession (SSFP) [7], and etc.. The 

analysis of noise behavior indicated that the images acquired 

by these methods have Gauss white noise with zero mean and 

the noise is uniformly distributed on the whole image [8-10]. 

Parallel imaging (PI) techniques based on multi-channel 

phased-array coil has become the popular technique in MRI 

scanner, including Sensitivity Encoding (SENSE) [3], 

Generalized Auto-calibrating Partially Parallel Acquisitions 

(GRAPPA) [11], and etc.. The noise distribution in PI is not 

uniform and can be described by the spatially varying 

geometry factor (g-factor) which depends on parameters such 

as the coil geometry, phase-encoding direction, and 

acceleration factor [3]. The calculation of the g-factor leads to 

the fact PI is widely used in MR clinical medicine. 

 

As a new mathematical framework for signal sampling and 

recovery, Compressed Sensing (CS) [12] has been widely 

applied in the field of biomedical imaging, especially in MRI 

[13]. The connection between CS theory and the 

undersampled MRI reconstruction problem was firstly made 

by Lusting et al. in [4], and then by more and more researchers. 

However, CS-related methods for MRI have not been adopted 

widely in the clinical setting due to their computational 

complexity, the uncertainty about which specific models (i.e. 

parameterizations, sparsifying transforms, and/ or numerical 

methods) to use, and mostly because that their performance 

has still not been extensively characterized [5]. To our best 

knowledge, the denoising capability of CS-based method has 

been demonstrated before only from reconstructions visually 

[4]. However, very little work was put in the quantitative and 

qualitative evaluation of the actual noise behavior using CS 

techniques, besides the quantitative evaluation of CS 

reconstructions in terms of sensitivity to reconstruction 

parameters as well as to the acquisition strategy for 

time-of-flight angiography data acquired on a 7T clinical MR 

scanner [14]. In summary, there is no evaluation such as noise 
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map or noise level to illustrate the noise behavior in CS 

reconstructions. 

 

In this work, we aim to use a noise analysis method called 

MP-Law method [10] to analysis the noise behavior of MR 

reconstructions using CS method with different reduction 

factors. The work focuses on brain CS-MRI reconstructions 

using non-linear conjugate gradient (NLCG) solvers 

(SparseMRI [4]). The results provide a qualitative and 

quantitative understand of the noise behavior in CS-MRI with 

different reduction factors. 

 

II. METHODOLY 

 

A. Compressed Sensing in MRI 

The CS method requires that: (a) the desired image has a 

sparse representation in a known transform domain (such as 

wavelet transform, discrete cosine transform, etc.), (b) the 

artifacts due to k-space undersampling are 

incoherent/noise-like (c) a nonlinear reconstruction can be 

used to enforce both sparsity of the image representation and 

consistency with the acquired data [4]. In MRI, the sampled 

linear combinations are simply individual Fourier coefficients 

(called k-space samples). We chose the NLCG solvers 

(SparseMRI [4]) as our CS reconstruction algorithm in this 

work.  

The MR image can be reconstructed by solving the 

following optimization problem[4]: 

min   
1

m (m)TV   s.t. 
2

F m yu        (1) 

where m denotes the reconstructed image, y is the measured 

k-space data from the scanner,  controls the fidelity of the 

reconstruction to the measured data,  denotes the linear 

operator that transforms from pixel representation into a 

sparse representation (e.g. wavelet transform), and Fu  is the 

undersampled  Fourier  transform, (m)TV  is  a  TV penalty  

(finite-differences), and  trades  sparsity with 

finite-differences sparsity. 

B.  MP-Law Method 

The MP-Law noise analysis method was developed by 

Ding et al. [10], which uses the statistical probability density 

function (PDF) of the KLT eigenvalues to distinguish random 

noise from signal. Specifically, a series of M dynamic 

images, each containing N  pixels, can be represented by a 

M N  data matrix A . Let the covariance matrix of A  be 

given by 

/T

CMA AA N  

where 
TA  is the transpose of A . There exists lower rank 

r ( r M ) such that the remaining M r  eigenvalues of 

CMA will have a PDF that follows the MP distribution 

2

1
( ) max(0,( )( ))

2
p     

 
                  (2) 

where 
2 2(1 )      ( ) /M r N                           (3) 

2  is the mean noise variance of A , which equals the 

average of the last M r eigenvalues of CMA and denoted by 

noise-level. Here #noise-only is used to denote the 

M r eigenvalues. Note that when the noise matrix contains 

non-IID noise that usually occurs with spatial image filtering 

or with PI techniques, N  in Eq. (3) is reduced to a value 

(denoting as N -change) smaller than the number of image 

pixels [10]. In order to determine the optimal #noise-only and 

N -change, the Kolmogorov-Smirnov test (KS-test) was 

used. The goodness of fit (GOF) is optimized when there is 

minimum difference between the target PDF, as described by 

Eq. (2), and the empiric eigenvalues cumulative distribution 

function (CDF) from CMA  of a given image series using 

KS-test. Finally the P value can be obtained. Therefore, we 

can use the parameters such as #noise-only, N -change, 

noise-level, and P value to describe the noise behavior of 

reconstructions.  

C.  Brain CS-MRI with NLCG experiments 

Five-slice, 100-times per slice, sequential, 2D FLASH 

image series of the brain were acquired on a 3T scanner 

(MAGNETOM Trio, SIEMENS, Erlangen, Germany) using 

an 12-channel head coil array for three healthy volunteers. 

The volunteers were requested to hold still during the 

acquisition. Informed consent was obtained from all 

volunteers in accordance with the institutional review board 

policy. The imaging parameters were: acquired 

matrix 128 128  , slice thickness=5.0 mm, flip angle 70 , 

echo time= 3.08 ms, repetition time=100 ms, bandwidth=340 

Hz/pixel. The full k-space data associated with each slice were 

retrospectively undersampled by a 2-D variable-density 

random undersampling mask. Examples of R=1 (no 

acceleration), R=3 and R=6 are illustrated in Figure 1 (a-c) 

respectively. The images were reconstructed by NLCG 

algorithm (SparseMRI [4], Eq. (1)) from undersampled 

Cartesian K-space with reduction factors R from 2 to 10.  

To make the problem simple and get the solid conclusion, 

the weight for  was set to zero. The reconstructions were 

conducted using several TV weights and chose the best one. 

For each volunteer, we have 5 9 reconstructed image 

sequences (100 images per sequence). After reconstruction, 

the noise behavior was characterized using the MP-Law 

method by identifying the noise-only eigenimages. The spatial 

noise, noise variance maps and one kind of fitting curve were 

acquired for each dataset. Then we predicted the noise-level 

for R = 12 and 14 using the model obtained from the results of 

R=2 to10. Additionally, the noise amplification factor 

(NA-factor), which is equivalent to g-factor [3], was 

calculated by R Fσ /(σ R) , where 2

Rσ  and 2

Fσ  are noise 

variances (noise-level) calculated from the reconstructions of 

reduced and full data, respectively, using the MP-Law 

method. We use “NA-factor” to denote this value for 
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simplicity. The positions with “NA-factor” < 1 were colored 

to indicate the region where CS reconstruction can suppress 

noise. 

 
Figure 1. Example 2-D variable-density random sampling maps for (a) R=1 

(b) R=3 and (c) R=6. 

 

III. RESULTS 

Table 1 illustrate the numerical results of one dataset of a 

volunteer with reduction factors R from 2 to 10, including fit 

probability P value, #noise-only, N -change and noise-level. 

As can be seen, the #noise-only and noise-level become higher 

with the increasing reduction factors, with the N -change 

becoming smaller. Particularly, when the reduction factor 

varying from 2 to 3, the noise-level increases sharply. But 

when the reduction factor is larger, the #noise-only and 

noise-level increase smoothly and tend to be constant. All of 

fitting probability is larger than 0.995. 
 

Figure 2 shows the CS reconstructions, corresponding 

spatial noise maps, noise variance maps and the colored 

“NA-factor” maps (from up to bottom) of one dataset of one 

volunteer with reduction factors R from 2 to 10 (from left to 

right). The maps in the same category are shown on the same 

scale for different reduction factors (see the color bars). When 

R becoming larger, there are visible artifacts in the 

reconstructions. It is seen that firstly the spatial noise 

distributed non-uniformly in whole image area. Secondly, the 

noise variance in CS reconstructions presents spatially variant 

with high variance presents in outer boundary and then 

spreads to inner region with increasing reduction factors. 

Finally, the noise variance (noise-level) from CS 

reconstruction increases with reduction factors, which is 

consistent with the numerical results shown in the Table I. 

These may due to nonlinearly reconstructing from 

undersampled data, and the image-content-dependent 

constraint (image is transform sparse) used in CS 

reconstruction.   

From the “NA-factor” maps shown on scale of [0.3855, 

8.0637] in the last row of Fig. 2 (A), the noise amplification on 

the edge is more significant than that at the inner region. In 

order to quantatively demonstrate the denoising capability of 

CS, the colored noise-suppressed region (“NA-factor” <1) 

were shown on color scale of [0.3855, 1] in Fig. 2 (A). It can 

be seen that when R < 6, the noise-suppressed region shrinks 

with the increasing of R, and then expands when R increases 

from 6 to 10. This may be because that 
2

Rσ increases slower 

than R  in heavily undersampling scenario.  And the Fig. 2 

(B) shows the number of where NA-factor<1 for R from 2 to 

10, and the numerical results agree with the colored map in Fig. 

2 (A). 

TABLE I. The numerical results of one datasets of one volunteere with 

reduction factors R from 2 to 10 

 P value            
#noise 

only 
N change       noise-level 

R = 2 0.999 63 3100 0.0007467 

R = 3 0.999 70 2200 0.0016579 

R = 4 0.999 74 1750 0.0025736 

R = 5 0.999 76 1600 0.0032878 

R = 6 0.997 77 1400 0.0033923 

R = 7 0.996 78 1200 0.0033295 

R = 8 0.996 79 1150 0.0033486 

R = 9 0.996 79 1050 0.0033633 

R = 10 0.995 79 950 0.0033764 

 

(A) 

(B) 

Figure 2. (A) The CS reconstructions, corresponding spatial noise maps, 

noise variance maps and the colored NA-factor maps (from up to bottom) of 

one dataset of one volunteer with reduction factors R from 2 to 10 (from left 

to right)    (B) The number of where NA-factor<1 for R from 2 to 10 
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A fitting curve on noise-level versus reduction factor R for 

one image sequence is shown as in Figure 3, using the 

corresponding values with reduction factors R from 2 to 10 by 

step 1 (9 nodes, the curve is denoted by 9-curve). The model 

conforms to  
0.59830.009406(1 ) 0.005923Rnoise level e   

 

and the 2 0.9892R 
 

In the Table II, we outline the predicting values of the 

#noise-only, N -change and noise-level using the fitting 

9-curve models for R equals 12 and 14  for one slice of one 

volunteer, including the values from MP-Law method 
trueV , 

the predicting values 
preV  ,the absolute values between 

trueV and
preV (Error), and the error-level obtained by 

pre true

true

V -V
100%

V


. It can be seen that the all error-level values 

for 9-curve models are controlled in less than 3%.  
 

Figure 3. Fitting 9-curve of noise-level versus reduction factor R of one 

dataset of one volunteer using the corresponding values with reduction 

factors R from 2 to 10 

 

TABLE II. The predicting results of a dataset of one volunteer 

 

noise-level 

 trueV  preV  

R = 12 0.0033982 0.0034759 

R = 14 0.0034041 0.0034809 

 Error EL 

R = 12 0.0000777 2.3% 

R = 14 0.0000768 2.3% 

 

IV. CONCLUSION 

In this work, the noise behavior with different reduction 

factors in CS brain reconstruction was analyzed by using the 

MP-Law method. Specifically, the NA-factor maps which 

demonstrate the denoising capability of CS were outlined. The 

results provide a qualitative and quantitative understanding of 

the noise behavior in brain CS-MRI, and will accelerate 

application of CS in clinical practice. 
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