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Abstract—This paper presents a novel energy back-projective 

composition model (EBPCM) for 3-D reconstruction of the 

coronary arteries from two mono-plane angiographic images. A 

major problem with the commonly used parameter deformable 

model is that the predefined correspondences may become 

non-strict matching after the curve evolution, which generally 

leads to large extra calculation errors. In this study, the energy 

field in the image is back-projected to 3-D space and decomposed 

into three independent components in the world coordinates 

centered at the iso-center of the C-arm. Then, the components 

from different views are composited together according to the 

rotation and scaling relationship of the imaging angles. The 

composited energy field hence is utilized as the external force to 

control the evolution of the vascular structure in 3-D space. As 

the driving force is iteratively updated according to energy in the 

two projection images, the non-strict matching can be effectively 

avoided. Also, the proposed method is very flexible, which can be 

composited with any energy fields such as Generalized Gradient 

Vector Flow (GGVF) and Potential Energy (PE) etc. 

Experiments demonstrate that the proposed method is very 

effective and robust, when using GGVF as the external force, the 

reconstruction RMS error can be reduced to about 0.595mm in 

the 3-D space. 

I. INTRODUCTION 

X-ray angiography (XRA) is a powerful technique to 
visualize vasculature, which has been widely used for cardiac 
diseases diagnosis and interventional treatment. Besides that, 
XRA has been regarded as the golden standard for the 
diagnosis of coronary artery diseases. However, as XRA 
image is the perspective projection of anatomic structures 
from 3-D space using X-ray, much 3-D information about the  
coronary arteries may be lost in the process. The successful 
diagnosis of related diseases usually requires profound 
professional knowledge and operation experience. 3-D 
reconstruction of coronary arteries not only can provide the 
physician with clear vascular structure in 3-D space, but also 
can supply quantitative information of vasculature, including 
diameter, length, perfusion volume and optimum imaging 
angle, etc. Hence, 3-D reconstruction technique has important 
clinical values in the diagnosis of vascular related disease 

[1]
. 

Current 3-D reconstruction method of coronary arteries 
can be classified into two main categories: bottom-up and 
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top-down method. For the bottom-up method, correspondence 
determination is the key procedure for which feature matching 
procedure is usually constructed by epipolar geometry theory 
[2,3]

 and the accuracy of 3-D reconstruction is strictly 
correlated with the correspondence results. One critical 
problem is that it is difficult to find the true correspondence, 
especially when the vessel segment is overlapped or is parallel 
with the epipolar line. Hence, large errors may be introduced 
during the 3-D reconstruction. For the top-down method, 
vessel segment is generally constructed as parameterized 
deformation model which evolves under the constraints of the 
combination of internal and external energies in the 2-D 
projection images 

[4-6]
. As a result, the vascular structure in 

3-D space deforms to adapt its structure to a stable 
representation, which has minimum projection errors in all of 
the projections. This method avoids the calculation of 
correspondences and therefore, is much more flexible than the 
bottom-up method. 

In this paper, a novel deformable model is proposed for 
the 3-D reconstruction of the coronary arteries from two 
angiographic images. Different from the traditional snake 
deformable model in which the curve is deformed in the 
projection images, the 3-D curve evolves in 3-D space 
according to the energy composition from the two 2-D 
projections. The proposed method is described as follows. 
Firstly, relative transformation, including rotation and 
translation between two angiographic images, is constructed 
based on the projection parameters, including the image head 
files. A straight line is then parameterized in 3-D space, which 
is constructed by two pairs of correspondence in angiographic 
views by geometrical triangulation method. Thereafter , the 
straight line is projected into the two angiographic views and 
the energy fields at every sampling point on the projection line 
are calculated. Then, the energy fields in the 2-D angiographic 
images are back-projected to the 3-D space and composited in 
the same coordinate system, which can be used as the pushing 
forces for the evolution of the deformable curve. In this study, 
the proposed energy back-projection and composition is 
called Energy Back-projective Composition Model 
(EBPCM). Elasticity and bending forces are employed and 
integrated as internal energy to preserve the smoothness and 
topology of the deformation curve. Under the combination of 
constructed internal and external energies, the predefined 
straight line evolves iteratively in the 3-D space toward the 
true representation of the vascular structures. The projections 
of the curve under iterations in the 2-D angiographic images 
will also deform gradually toward the vascular branches, 
which helps in effectively avoiding  the correspondence 
matching problem.  
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II. DEFORMATION MODEL BASED 3D RECONSTRUCTION 

METHOD 

A. Deformable model of open curve 

Suppose an open 3-D curve is ( ) [ ( ), ( ), ( )], [0,1]X s x s y s z s s  , 

then the parameter deformation model can be generally 
defined as 

1

int

0

[ ( ( )) ( ( ))]energy ernal externalE E X s E X s ds  ,            (1) 

Where 
internalE  and 

externalE  are internal and external energies, 

respectively. For a deformable curve, the external energy 
pushes the curve to deform its shape, while the internal energy 
serves to maintain its smoothness. Up till now, various 
external energies such as Gaussian energy, balloon model, 
Potential Energy, Gradient Vector Flow (GVF) and 
Generalized Gradient Vector Flow (GGVF)

[7]
 etc. have been 

proposed by numerous researchers. In this study, GGVF 
proposed by Xu et al. in 1998 is utilized to serve as the 
external driving energy. The following section will provide a 
general introduction to GGVF. 

The edge map of the image may be defined as ( , )f u v , and 

the energy of the vector field is   ( , ) [ ( , ), ( , )]imageE u v eu u v ev u v , 

where ( , )eu u v  and ( , )ev u v  are gradient vectors at point ( , )u v  

in the horizontal and vertical directions, respectively. In such 

a case, the energy function is represented by: 

2 2 2 2 2 2( ) | | | |u v u v imageeu eu ev ev f E f dudv        .       (2) 

Where 
ueu  and 

uev  are the first derivative of eu  and ev  with 

respect to direction u , whereas 
veu  and 

vev  are the first 

derivative with respect to direction v . 

B. Energy Back-projective Composition Model (EBPCM) 

The former top-down methods for 3-D reconstruction of 
vascular structures from angiographic images generally 
employed parameter deformation models for the curve 
deformation, as can be found in [4-6]. For this method, every 
step of iteration strictly depends on the two energies in the two 
2-D images, and the motion vectors of each correspondence 
pair need to be recorded so that the 3-D vessel can be 
reconstructed. From our research, we found that during the 
curve deforming, the correspondences in two images no 
longer satisfy the widely used epipolar constraints. If the 3-D 
vessel is reconstructed by the wrong correspondences, error 
may gradually accumulate during the iteration process and this 
problem was identified in the next experimental section. 

 

Figure 1.  Energy back-projection and scaling principle. 

To solve this problem, the energies in the images are 
back-projected to the 3-D space, as can be seen in Fig.1. We 

construct 3-D coordinates 
j j j jO X Y Z  at the optical center of 

the jth image, for which 
jX  and 

jY  are parallel to the image 

coordinates 
ju  and 

jv , respectively. Then, on the basis of left 

hand rule, the direction of 
jZ  can be obtained by calculating 

the cross product of 
jX  and 

jY . Let ,   and   denote the 

rotation angles between coordinates 
j j j jO X Y Z  and the 

original coordinates O XYZ  correspond to x, y and z axis 

respectively. Let 
,j ieu  and 

,j iev  represent the back-projected 

energy corresponding to the axis of 
ju  and 

jv respectively. In 

this study, the rotation order is defined as X Y Z  .  

As composition and subtraction of space vectors are only 
decided by their rotation angles, the effect of translation can 
be neglected for the energy composition. Then, the two 
components 

,j ieu  and 
,j iev  of the external energy are 

back-projected into 3-D space and decomposed into the three 
axis of  the O XYZ , which can be defined as follows: 
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Where 
,j iex , 

,j iey  and 
,j iez  are the energy components along 

the three axis.  

As the energy components from different angiographic 
images are independent and can be composited together. 
Hence, for multiple views we have: 
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Where m denotes the number of views, while ,

sum

j iex , ,

sum

j iey  and 

,

sum

j iez  represent the summaries of energy component in the 

three axis in coordinate O XYZ .  

Under the composited energies of internal and external 
constraint in 3-D space, all the points on the predefined curve 
can evolve gradually to adapt the shape of the curve to the 
condition that the total re-projection errors will reach the 
minimum. The developed energy back-projection and 
composition model is very general and can be used for any 
form of external energy such as PE, GVF and GGVF. In 
addition, the model is not only limited to two angiographic 
images, but can also be utilized for multiple views. In this 
study, all the three above mentioned energies are tested in the 
experimental parts. 
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TABLE I.  COMPARISON OF RECONSTRUCTION RESULTS FOR DIFFERENT ALGORITHMS FOR FOUR SIMULATED IMAGE PAIRS. 

Data Images 
Initial 

EPIM EBPCM 

PE GGVF PE GGVF 

RMS(mm) RMS(mm) 0

0

 




 RMS(mm) 0

0

 




 RMS(mm) 0

0

 




 RMS(mm) 0

0

 




 

1 

IRPE 1 5.164 0.396 92.33% 0.466 90.98% 0.379 92.65% 0.409 92.08% 
IRPE 2 5.592 0.418 92.52% 0.434 92.25% 0.453 91.90% 0.411 92.64% 

SE 5.845 1.243 78.73% 0.597 89.79% 1.056 81.94% 0.682 88.33% 

2 

IRPE 1 6.184 0.393 93.64% 0.377 93.91% 0.360 94.17% 0.449 92.75% 
IRPE 2 6.542 0.374 94.28% 0.471 92.79% 0.426 93.49% 0.327 95.00% 

SE 6.734 1.344 80.05% 0.711 89.45% 1.121 83.36% 0.637 90.54% 

3 

IRPE 1 7.162 0.408 94.31% 0.428 94.02% 0.403 94.37% 0.418 94.16% 
IRPE 2 6.637 0.413 93.78% 0.395 94.05% 0.417 93.72% 0.407 93.87% 

SE 6.195 1.065 82.81% 0.684 88.96% 1.026 83.44% 0.544 91.22% 

4 

IRPE 1 5.394 0.398 92.63% 0.414 92.33% 0.372 93.10% 0.408 92.45% 
IRPE 2 5.955 0.346 94.18% 0.401 93.26% 0.399 93.29% 0.404 93.22% 

SE 5.961 1.045 82.46% 0.663 88.88% 0.914 84.67% 0.515 91.36% 

AVG 
IRPE 6.079 0.393 93.46% 0.423 92.95% 0.401 93.34% 0.404 93.27% 
SE 6.184 1.174 81.01% 0.664 89.27% 1.029 83.35% 0.595 90.36% 

III. EXPERIMENTAL RESULTS 

In order to investigate the performance of the proposed 
method, a series of experiments are tested on phantom data 
and routine clinical angiograms. The phantom data is 
simulated from CTA data obtained from MACCAI Grand 
Challenge 2012, while the routine angiographic images are 
obtained from a GE Innva 2000 XRA device at Beijing 
Anzhen Hospital. The criterion to quantify the accuracy is 
taken as two folds: (1) Image re-projection error (IRPE): the 
Euclidean distance between a set of centerline points in 
projection image and the corresponding re-projected 2-D 
centerline points in the image; (2) Space error (SE): the 
Euclidean distance between a set of centerline points of the 
phantom data and the reconstructed centerline points in 3-D 
space. Let 

0  and   represent the initial and the 

reconstructed RMS errors, by calculating the RMS reduction 

ratio 0

0

 



 , the performance of the evaluating method can be 

effectively quantified. 

A. Phantom data 

As we have mentioned in this paper, the point-to-point 
corresponding relationship will be transformed continuously 
with the deformation of the curve in the projection images. In 
order to investigate the non-strict matching problem, the 
motion trajectories of the curves are recorded at each iteration. 
So how the deformation model affects the epipolar geometry 
can be effectively quantified. Fig. 2(A) and 2(B) give the two 
image planes. 2(A1) and 2(B1) are the corresponding 
deformation curves in 3-D space. The blue and green curves 
represent the locations of the deformation curve at the first and 
the second iteration respectively. The red curves represent the 
true vascular centerline, while the light-blue straight lines in 
the second column represent the epipolar lines corresponding 

to points 1

1u  and 2

1u  in first view. Initially, 1

1u  and 2

2u  are point 

pairs strictly satisfying epipolar constraint. After one step of 

iteration, 1

1u  and 2

1u  are no longer accord with the epipolar 

geometry, there is an offset d between the epipolar line 

intersection and the point 2

2u . Hence, if the space point is 

directly reconstructed from 2

1u  and 2

1u , large error must be 

involved in the reconstruction process.  

 

Figure 2.  Non-strict matching during two steps of iterations. 

In order to solve the non-strict matching problem, the 
EBPCM is proposed for deforming the vascular centerline, 
and hence, improving the reconstruction accuracy. To 
evaluate the performance of the proposed method, in this part, 
the traditional widely used Energy Projection and Iteration 
model (EPIM) is realized and compared with the developed 
EBPCM. Both the EBPCM and EPIM can utilize different 
forms of external energies, including PE and GGVF. Hence, 
the two models and three energies are composited and realized 
to form four types of methods. Fig. 3 shows reconstruction SE 
at every iteration step for the four methods. The upper figure 
shows calculation errors on every iteration step, while the 
lower figure gives magnified view of the last five iterations. 
From the upper figure, it can be seen that the proposed 
EBPCM based methods converge more rapidly than the EPIM 
based methods. From the lower figure, it can be seen that, the 
EBPCM based method can obtain high reconstruction 
accuracy than the EPIM based method. 

Table I lists the final reconstruction results of different 
algorithms. It can be observed that the proposed EBRCM 
based method is better than the traditional EPIM based 
method for all the three types of external energies, the 
comparatively increasing ratios are 2.34% and 1.09% for PE 
and GGVF, respectively. For all the image pairs tested, the 
GGVF EBPCM based method outperforms the other 
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algorithms, which can achieve the best 3-D reconstruction 
error of 0.553mm. Obviously, the proposed GGVF EBPCM 
method is very effective for the vascular reconstruction from 
two projection images.  

 

Figure 3.  Space error for the four methods at every iteration steps. 

B. Clinical coronary angiogram 

From the above experiments, different algorithms are 
validated on phantom data sets. It can be concluded that the 
proposed GGVF EBPCM based method is very effective and 
can obtain the best reconstruction accuracy. Hence, in this 
part, the GGVF EBPCM based method is utilized to 
reconstruct the whole vascular structures. In order to reduce 
the cardiac motion interference and obtain the same cardiac 
phase, Electrocardiograph gating is used in the acquisition 
procedures. Table II lists the IRPE of the proposed GGVF 
EBPCM based method. As seen from the table, the image 
re-projection errors are reduced compared to the original 
errors. The mean RMS error is reduced from 6.739mm to 
0.411mm for the proposed GGVF EBPCM based method 
over the 5 data sets. 

TABLE II.  ERROR STATISTICS OF EUCLIDEAN DISTANCES BETWEEN THE 

EXTRACTED CENTERLINE POINTS AND CORRESPONDING RE-PROJECTIONS OF 

THE RECONSTRUCTED 3-D CENTERLINE POINTS IN THE TWO VIEWS. 

Data Images 
Initial RMS 

(mm) 

GGVF EBPCM 

RMS  (mm) 

1 
IRPE 1 6.622 0.402 

IRPE 2 7.314 0.377 

2 
IRPE 1 7.272 0.406 

IRPE 2 6.854 0.452 

3 
IRPE 1 6.388 0.384 

IRPE 2 6.367 0.414 

4 
IRPE 1 6.837 0.453 

IRPE 2 6.735 0.403 

AVERAGE 6.739 0.411 

 
Figure 4.  Final reconstruction results of data set 1. 

Fig.4 gives the final reconstruction results of data 1 in 
Table II. 4(A3) and 4(A4) are the re-projections of the 
reconstructed model superposed on the corresponding views. 

4(A5) and 4(A6) show the reconstructed 3-D model of the 
coronary arteries at the two corresponding view angles. It can 
be seen that the reconstructed model of the coronary arteries 
are perfectly matched with the vasculatures in the two 
angiograms, and few differences can be found in the 
corresponding views. Real coronary arteries are obtained, and 
the hidden parts are clearly recovered.  

IV. CONCLUSION AND DISCUSSION 

In this paper, a novel deformable model based method is 
proposed for reconstructing coronary arteries from a pair of 
monoplane angiographic images. With regards to the error 
accumulation problem attributed to the non-strict matching for 
the deformable model, a novel energy back-projective 
composition model (EBPCM) with GGVF is improved to 
determine the external energyand two models with three 
commonly used energies are utilized and compared. 
Experimental results on phantom data and clinical 
angiographic images demonstrate that the proposed 
reconstruction method is very effective and robust for the 
reconstruction of the coronary arteries from two mono-plane 
angiographic images. The re-projection error of the 
reconstructed skeletons in angiographic images is less than 
0.45mm, while the reconstruction error in 3-D space is less 
than 0.60mm. From the experiments, it can be seen that 
realistic coronary artery trees can be recovered from different 
angiographic images, and hidden parts can be clearly 
visualized. 
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