

Abstract— Although widely used in nuclear medicine

(gamma-camera, single photon emission computed tomography

(SPECT), positron emission tomography (PET)), iterative

reconstruction has not yet penetrated in CT. The main reason

for this is that data sets in CT are much larger than in nuclear

medicine and iterative reconstruction then becomes

computationally very intensive. Graphical Processing Units

(GPUs) provide the possibility to reduce effectively the high

computational cost of their implementation. It is the goal of this

work to develop a GPU-based algorithm to reconstruct high

quality images from under sampled and noisy projection data.

I. INTRODUCTION

In medicine, the diagnosis based on computed
tomography (CT) is fundamental for the detection of
abnormal tissues by different attenuation on X-ray energy,
which frequently is not clearly distinguished for radiologists.
In CT imaging, a set of projections taken with a scanner is
used to reconstruct the internal structure of an object.

The reconstruction problem has been resolved by Johan
Radon in 1917 [1]. Since then, technological and theorical
advances have been the moving force for constant interest in
different reconstruction methods and their implementation.
In the implementation of an algorithm, it is possible to plan
how to optimize its execution and achieve better
performance. That is why parallel computing that distributes
calculation processes efficiently is important. It is has been
recognized that the graphic processing unit (GPU) can be
exploited for improving computational efficiency [2] and
using the graphic processing unit to improve algorithm
performance has become increasingly popular.

The filtered backprojection method is one of the

analytical methods and it is used in most of today’s cone-

beam CT scanners as the standard reconstruction approach.

Interestingly, the GPU implementation of the filtered

backprojection algorithm has been more widely investigated

in the computed tomography literature [3].

*Research supported by ANITRAN Project PROMETEO/2010/039.

L. A. Flores is with the Departamento de Sistemas Informáticos y

Computación, Universitat Politècnica de València, Camino de Vera s/n,

46022, Valencia, Spain (e-mail: liuflo@posgrado.upv.es).

V. Vidal is with the Departamento de Sistemas Informáticos y

Computación, Universitat Politècnica de València, Camino de Vera

s/n,46022, Valencia, España (e-mail: vvidal@upv.es).

P. Mayo is with the Servicios Tecnológicos, Grupo Dominguis, Sorolla

Center, local 10 Avda. de las Cortes Valencianas, 46015 Valencia, España

(e-mail: p.mayo@titaniast.com).

F. Rodenas is with the Departamento de Matemática Aplicada,

Universitat Politècnica de València, Camino de Vera s/n, 46022,

Valencia, España (e-mail: frodenas@mat.upv.es).

G. Verdú is with the Departamento de Ingeniería Química y Nuclear,

Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia,

España (e-mail: gverdu@iqn.upv.es).

On the other hand, iterative methods provide the optimal
reconstruction in noisy conditions in the image. In CT, it is
common to find incomplete set of no equally spaced
projections. In these cases, according to the research ([6],
[7], [8]), iterative reconstruction techniques provide images
with better quality.

Acceleration of iterative reconstruction is an active area of
research. Stone et al. [9] describe the accelerated
reconstruction algorithm on graphical processing units
(GPUs) for advanced magnetic resonance imaging (MRI).
They reconstruct images of 128

3
 voxels in over one minute.

Johnson and Sofer [10] propose a parallel computational
method for emission tomography applications that is capable
of exploiting the sparsity and symmetries of the model and
demonstrate that such a parallelization scheme is applicable
to the majority of iterative reconstruction algorithms. The
time needed for the reconstruction of thick-slices images
(128x128x23 in voxels) is over 3 minutes. Pratx et al [11]
show results of iterative reconstruction using GPU in PET.
The required time on a single GPU to reconstruct an image
of 1603 voxels is 8.8 second. Multi GPU implementation of
tomography reconstruction accelerates reconstruction of
images 350x350x9 up to 67 seconds on a single GPU and 32
seconds on four GPUs [12].

In our previous work we have analyzede the usage of
Extensive Toolkit for Scientific computation (PETSc) [13] in
parallel image reconstruction. It has been shown that PETSc
facilitates a great deal of the programming task and provides
the possibility for the optimal usage of a whole system in the
process of reconstruction. In this work, we present the GPU
based implementation of the iterative algorithm for the image
reconstruction.

The outline of this paper is as follows. In section 2, we
present briefly mathematical aspects of the problem and a
GPU implementation of the algorithm.The test results are
presented in section 3 and section 4 summarizes our
conclusions.

II. METHODOLOGY

A. Mathematical aspects

 It is possible to consider the problem of image

reconstruction from projections as a system of linear

equations of the form:

P,=Ax (1)

where the system matrix A simulates computer tomography
functioning and its elements depend on the projection
number and the angle at which the projections have been
taken and may not be square, x is a column matrix whose

 Iterative Reconstruction of CT Images on GPUs*

Liubov A. Flores, Vicent Vidal, Patricia Mayo, Francisco Rodenas, Gumersindo Verdú

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5143

values represent intensities of the image, and the column
matrix P represents projections collected by a scanner.

For a given angle, we assume that the number of

projections ranges from 1 to m. If there are k different

angles, then in (1) P is a column matrix with mxk elements, x

is a column matrix with n
2
 elements and A is an mkxn

2

rectangular matrix. Many properties of the reconstructed

image depend on the approximations when calculating the

system matrix. We used Siddon algorithm to compute the

elements of the matrix. It has been shown [14] that this

method gives good results in approximating the system

matrix in a rectangular grid.

We implemented the iterative Least Square QR method

(LSQR) to solve the system (1) by minimizing:

2
min PAx . The matrix A is normally large and sparse

and is used only to compute products of the form Av and A
T
u

for various vectors v and u.

In practice, A is a rectangular nonsymmetrical sparse matrix

and therefore it is recommendable to use compact storage

format as Compact Sparse Row (CSR) or Compact Sparse

Column (CSC), that allow to store only nonzero elements.

The dimensions of A grow proportionally to the resolution of

the image to be reconstructed and the number of projections,

increasing therefore the computational cost.

In this paper we attempt to develop an algorithm suitable for
GPU parallelization.

B. GPU implementation of the algorithm

The main steps of the reconstruction process are shown in

Fig. 1.

Figure 1. Reconstruction process with LSQR solver in CUDA parallel
programming model

The system matrix and the projections are generated
previously and stored in binary format.

Special GPUs card dedicated for scientific computing, like

the NVIDIA Tesla M2050 card is used in this paper to carry

out the experiment. Such a GPU card has a total number of

448 cuda cores with 3GB ECC memory, shared by all

processor cores. Utilizing such a GPU card with tremendous

parallel computing ability can considerably elevate the

computation efficiency of our algorithm.

NVIDIA also introduced CUDA
TM

 [15], a general purpose

parallel computing architecture – with a new parallel

programming model and instruction set architecture – that

leverages the parallel compute engine in NVIDIA GPUs to

solve many complex computational problems in a more

efficient way than on a CPU. CUDA comes with a software

environment that allows developers to use C or C++ as high-

level programming languages.

We also use CUBLAS [16] and CUSPARSE [17] libraries

that allow the user to access the computational resources of

NVIDIA Graphical Processing Unit (GPU). The CUBLAS

library is an implementation of BLAS (Basic Linear Algebra

Subprograms) on top of the NVIDIA
®
CUDA

TM
 runtime. To

use the CUBLAS library, the application must allocate the

required matrices and vectors in the GPU memory space, fill

them with data, call the sequence of desired CUBLAS

functions, and then upload the results from the GPU memory

space back to the host. The CUBLAS library also provides

helper functions for writing and retrieving data from the

GPU.

The NVIDIA
®
 CUDA

TM
CUSPARSE library contains a set

of basic linear algebra subroutines used for handling sparse
matrices and is designed to be called from C or C++. These
subroutines include operations between vector and matrices
in sparse and dense format, as well as conversion routines
that allow conversion between different matrix formats.

CUBLAS and CUSPARSE are written using the CUDA
parallel programming model and help to overcome the
challenge to develop application software that transparently
scales its parallelism to leverage the increasing number of
processor cores.

III. RESULTS AND DISCUSSIONS

For experimental purposes we used the real projections

and the reference images acquired from the Hospital Clinico

Universitario in Valencia. We worked with fan-beam

projections collected by a scanner with 512 sensors in the

range 0 - 180 with 0.9 degree spacing. To be able to

reconstruct the image with the iterative method we complete

the given set up to 360 degrees using the symmetric structure

of the system matrix. In order to analyze the capacity of

iterative algorithms to reconstruct images from less number

of projections, from the initial set three sets of equally

spaced (with the angle steps 0.9, 1.8, and 3.6 degrees)

projections have been derived.

5144

The results have been measured on a one GPU card of the

cluster system Euler that belongs to the Alicante University

in Spain. The GPU computing node consists of 2 x CPU

Intel Xeon X5660, each with 6 cores of 2,80 GHz and 3 x

GPU NVIDIA TESLA M2050 with 448 cores and 3GB

memory each of them.

For the images of 256x256 and 512x512 pixels the solving

time of the system (1) on a one CPU and a one GPU card

is given in Table 1. The GPU time corresponds to the

execution time of operations on a device not taking into

account time spent in queues. The standard deviation of the

results after running the application ten times is 2.9e-004. In

the system matrix, the number of rows is obtained by

multiplying the number of used sensors and angles and

corresponds to the number of the projections used to

reconstruct the image; the number of columns corresponds to

the size of the reconstructed image (256x256 and 512x512

pixels).

TABLE 1. THE RECONSTRUCTION TIME OF IMAGES ON CPU AND GPU ON

EULER CLUSTER

System Matrix (rows x

columns)

CPU (seconds) One GPU card

(seconds)

M1 = (256x100) x (256x256) 2.7 0.1569

M2 = (256x200) x (256x256) 5.3 0.3056

M3 = (256x400) x (256x256) 10.5 0.6127

M4 = (512x100) x (512x512) 12.3 0.6584

M5 = (512x200) x (512x512) 24.4 1.2741

The results show the efficiency of the algorithm based on a

GPU parallel computing ability. SpeedUp of 19.2 has been

achieved to reconstruct images of 512x512 pixels.

Comparing with the best results presented in [12]

(reconstruction of 350x350x9 images requires 67 seconds on

a single GPU), we see that our implementation (considering

2D case) allows to reconstruct images with higher resolution

and in much less time.

TABLE II. QUALITY COMPARISON BETWEEN REFERENCE AND

RECONSTRUCTED IMAGES OF 512X512 PIXELS

N of Angles MSE PSNR

100 0.0143 66.9300

200 0.0110 67.8019

400 0.0100 68.3378

Also the quality comparison between reference images and

images reconstructed from different number of angles has

been made and the quantitative results are summarized in

Table 2. To compare the images Mean Square Error (MSE)

and Peak Signal to Nose Ratio (PSNR) functions have been

used. The results show that iterative LSQR algorithm allows

the reconstruction of images of a good quality from less

number of angles or, consequently, projections. This might

be useful in situations when the complete set of projections is

not physically possible. For example, in scanners that might

be used to realize urgent examination at any place. They do

not provide equally spaced data, so, the algebraic

reconstruction is more suitable for these devices.

Fig. 2 shows the images reconstructed in parallel from

different number of equally spaced projections. It is needed

to be mentioned that usually post processing procedure (as

filtering) is applied to the reconstructed image in order to

improve the quality. In this work we present the images right

after the reconstruction stage without any filtering.

Figure 2. Reconstructed images (512x512 pixels): a) reference images; b),

c), d) iterative reconstruction from 400, 200 and 100 angles at the iteration

12 when the given tolerance is achieved

Finally, Fig. 3 illustrates the capacity of the iterative

algorithm to reconstruct images from incomplete and

unequally spaced data while FBP fails to do that.

Figure 3. Reconstruction from incomplete data: (a) LSQR and (c) FBP-

reconstruction from the set with removed angles (256 sensors x 170

angles); (b) LSQR and (d) FBP - reconstruction from the set with

removed sensors (226 sensors x 200 angles). Removed angles and sensors

have been chosen arbitrary.

5145

IV. CONCLUSIONS

The GPU-based iterative algorithm of image

reconstruction presented in this paper shows that the iterative

methods are capable to reconstruct images with low

computational cost.

CUDA parallel programming model with CUBLAS and

CUSPARSE libraries allow overcoming the challenge to

solve complex computational problems and take advantage

of the computational resources of the NVIDIA graphics

processor (GPU).

 We believe that more significant results could be achieved

in 3D image reconstruction when a huge amount of

computing is involved.

ACKNOWLEDGMENT

We wish to thank Dr. Sergio Díez, Head of the
Radiology and Radiophysics Protection Service of the
hospital Clinico Universitario, for the collaboration in
carrying out this work.

We also grateful to the Alicante University for allowing
to test our algorithms on Euler cluster system.

REFERENCES

[1] R. S. Deans, The Radon transform and some of its applications.
Dover Publications, INC. Mineola, New York, 2007.

[2] K. Mueller, F. Xu, and N. Neophytou, “Why do GPUs work so well
for acceleration of CT?,” in SPIE Electronic Imaging ’07 (Keynote,
Computational Imaging V), San Jose, CA, 2007

[3] F. Xu and K. Mueller, “Accelerating popular tomographic
reconstruction algorithms on commodity PC graphics hardware,”
IEEE Transaction of Nuclear Science, 2005.

[4] G. Wang, H.Yu, and B. De Man, “An outlook on X-ray CT research
and development,” Medical Physics, vol. 35(3), pp. 1051-1064, Mar.
2008.

[5] B. M. Crawford and G. T. Herman,”Low-dose, large-angled cone-
beam helical CT data reconstruction using algebraic reconstruction
techniques,” Image and Vision Comp., vol. 25, pp. 78-94, 2007.

[6] J. Nuyts, B. De Man, P. Dupont, M. Defrise, P. Suetens, and L.
Mortelmans, “Iterative reconstruction for helical CT : A simulation
study,” Phys. Med. Biol., vol. 43, pp. 729-737, 1998.

[7] R. G. Wells, M. A. King, P. H. Simkin, P. F. Judy, A. B. Brill, H. C.
Gifford, R. Licho, P. H. Pretorius, P. B. Schneider, and D. W. Seldin,
“Comparing Filtered backprojection and ordered-subsets expectation
maximization for small-lesion detection and localization in 67Ga
SPECT,” J. Nucl. Med, vol. 41, pp. 1391-1399, 2000.

[8] N. Sinha and J. T. W. Yeow, “Carbon nanotubes for biomedical
applications,” IEEE Trans. Nano., vol. 4(2), pp. 180-196, 2005.

[9] Stone S. S., Haldar J. P., Tsao S.C., Hwu W.-m W., Sutton B. P.,
Liang Z. P., 2008. Accelerating advanced MRI reconstructions on
GPUs. Journal of Parallel and Distributed Computing, vol. 68, issue
10, 1307-1318.

[10] Johnson C.A., Sofer. A., 1999. A data-parallel algorithm for iterative
tomographic image reconstruction. Frontiers of Massively Parallel
Computation, pp. 126-137.

[11] Pratx G., Chinn G., Olcott P.D., Levin C. S., 2009. Fast, Accurate
and Shift-Varying Line Projections for Iterative Reconstruction Using
the GPU. IEEE Transactions on Medical Imaging, 28(3), pp. 435-445.

[12] Jang B, Kaeli D., Do S., Pien H., 2009. Multi GPU implementation of
iterative tomographic reconstruction algorithms. Biomedical Imaging:
From Nano to Macro, pp. 185-188.

[13] L. Flores, V. Vidal, P. Mayo, F. Rodenas, G. Verdú, “Fast Parallel
Algorithm for CT Image Reconstruction,’’ Proceedings of 34th
Annual International Conference of the IEEE Engieneering in
Medicine & Biology Society. August 28-September 1, 2012 San
Diego, p. 4374-4377. ISBN: 978-1-4244-4120-4

[14] M. T. Cibeles Mora, “Metodos de reconstruccion volumetrica
algebraica de imágenes tomograficas.” PhD thesis, UPV, Valencia,
Spain, 2008.

[15] http://developer.download.nvidia.com/compute/DevZone/docs
/html/C/doc/CUDA_C_Programming_Guide.pdf. Last access
11.2012.

[16] http://developer.download.nvidia.com/compute/DevZone/docs/html/C
UDALibraries/doc/CUBLAS_Library.pdf. Last access 11.2012.

[17] http://developer.download.nvidia.com/compute/DevZone/docs/html/C
UDALibraries/doc/CUSPARSE_Library.pdf. Last access 11.2012.

5146

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

