
  

 

Abstract— Although widely used in nuclear medicine 

(gamma-camera, single photon emission computed tomography 

(SPECT), positron emission tomography (PET)), iterative 

reconstruction has not yet penetrated in CT. The main reason 

for this is that data sets in CT are much larger than in nuclear 

medicine and iterative reconstruction then becomes 

computationally very intensive. Graphical Processing Units 

(GPUs) provide the possibility to reduce effectively the high 

computational cost of their implementation.  It is the goal of this 

work to develop a GPU-based algorithm to reconstruct high 

quality images from under sampled and noisy projection data.  

I. INTRODUCTION 

In medicine, the diagnosis based on computed 
tomography (CT) is fundamental for the detection of 
abnormal tissues by different attenuation on X-ray energy, 
which frequently is not clearly distinguished for radiologists. 
In CT imaging, a set of projections taken with a scanner is 
used to reconstruct the internal structure of an object.  

The reconstruction problem has been resolved by Johan 
Radon in 1917 [1]. Since then, technological and theorical 
advances have been the moving force for constant interest in 
different reconstruction methods and their implementation. 
In the implementation of an algorithm, it is possible to plan 
how to optimize its execution and achieve better 
performance. That is why parallel computing that distributes 
calculation processes efficiently is important. It is has been 
recognized that the graphic processing unit (GPU) can be 
exploited for improving computational efficiency [2] and 
using the graphic processing unit to improve algorithm 
performance has become increasingly popular. 

The filtered backprojection method is one of the 

analytical methods and it is used in most of today’s cone-

beam CT scanners as the standard reconstruction approach. 

Interestingly, the GPU implementation of the filtered 

backprojection algorithm has been more widely investigated 

in the computed tomography literature [3].  
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On the other hand, iterative methods provide the optimal 
reconstruction in noisy conditions in the image.  In CT, it is 
common to find incomplete set of no equally spaced 
projections. In these cases, according to the research ([6], 
[7], [8]), iterative reconstruction techniques provide images 
with better quality. 

Acceleration of iterative reconstruction is an active area of 
research. Stone et al. [9] describe the accelerated 
reconstruction algorithm on graphical processing units 
(GPUs) for advanced magnetic resonance imaging (MRI). 
They reconstruct images of 128

3
 voxels in over one minute. 

Johnson and Sofer [10] propose a parallel computational 
method for emission tomography applications that is capable 
of exploiting the sparsity and symmetries of the model and 
demonstrate that such a parallelization scheme is applicable 
to the majority of iterative reconstruction algorithms. The 
time needed for the reconstruction of thick-slices images 
(128x128x23 in voxels) is over 3 minutes.  Pratx et al [11] 
show results of iterative reconstruction using GPU in PET. 
The required time on a single GPU to reconstruct an image 
of 1603 voxels is 8.8 second.  Multi GPU implementation of 
tomography reconstruction accelerates reconstruction of 
images 350x350x9 up to 67 seconds on a single GPU and 32 
seconds on four GPUs [12].  

In our previous work we have analyzede the usage of 
Extensive Toolkit for Scientific computation (PETSc) [13] in 
parallel image reconstruction. It has been shown that PETSc 
facilitates a great deal of the programming task and provides 
the possibility for the optimal usage of a whole system in the 
process of reconstruction. In this work, we present the GPU 
based implementation of the iterative algorithm for the image 
reconstruction. 

The outline of this paper is as follows. In section 2, we 
present briefly  mathematical aspects of the problem and a  
GPU implementation of the algorithm.The test results are 
presented in section 3 and section 4 summarizes  our 
conclusions.  

II. METHODOLOGY 

A. Mathematical aspects 

         It is possible to consider the problem of image 

reconstruction from projections as a system of linear 

equations of the form:  

P,=Ax                                     (1)                                                  

where the system matrix A simulates computer tomography 
functioning and its elements depend on the projection 
number  and the angle at which the projections have been 
taken and may not be square, x is a column matrix whose 
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values represent intensities of the image, and the column 
matrix P represents projections collected by a scanner.  

For a given angle, we assume that the number of 

projections ranges from 1 to m.  If there are k different 

angles, then in (1) P is a column matrix with mxk elements, x 

is a column matrix with n
2
 elements and   A is an mkxn

2
 

rectangular matrix. Many properties of the reconstructed 

image depend on the approximations when calculating the 

system matrix. We used Siddon algorithm to compute the 

elements of the matrix. It has been shown [14]   that   this 

method gives good results in approximating the system 

matrix in a rectangular grid. 

We implemented the iterative Least Square QR method 

(LSQR) to solve the system (1) by minimizing: 

2
min PAx . The matrix A is normally large and sparse 

and is used only to compute products of the form Av and A
T
u 

for various vectors v and u. 

In practice,  A is a rectangular nonsymmetrical sparse matrix 

and therefore it is recommendable to use compact storage 

format as Compact Sparse Row (CSR) or Compact Sparse 

Column (CSC), that allow to store only nonzero elements. 

The dimensions of A grow proportionally to the resolution of 

the image to be reconstructed and the number of projections, 

increasing therefore the computational cost. 

In this paper we attempt to develop an algorithm suitable for 
GPU parallelization.  

B. GPU  implementation of the algorithm 

The main steps of the reconstruction process are shown in 

Fig. 1. 

 
 

Figure 1.  Reconstruction process with LSQR solver in CUDA parallel 
programming model 

The system matrix and the projections are generated 
previously and stored in binary format.  

Special GPUs card dedicated for scientific computing, like 

the NVIDIA Tesla M2050 card is used in this paper to carry 

out the experiment. Such a GPU card has a total number of 

448 cuda cores with 3GB ECC memory, shared by all 

processor cores. Utilizing such a GPU card with tremendous 

parallel computing ability can considerably elevate the 

computation efficiency of our algorithm.  

NVIDIA also introduced CUDA
TM

 [15], a general purpose 

parallel computing architecture – with a new parallel 

programming model and instruction set architecture – that 

leverages the parallel compute engine in NVIDIA GPUs to 

solve many complex computational problems in a more 

efficient way than on a CPU. CUDA comes with a software 

environment that allows developers to use C or C++ as high-

level programming languages.  

We also use CUBLAS [16] and CUSPARSE [17] libraries 

that allow the user to access the computational resources of 

NVIDIA Graphical Processing Unit (GPU). The CUBLAS 

library is an implementation of BLAS (Basic Linear Algebra 

Subprograms) on top of the NVIDIA
®
CUDA

TM
 runtime. To 

use the CUBLAS library, the application must allocate the 

required matrices and vectors in the GPU memory space, fill 

them with data, call the sequence of desired CUBLAS 

functions, and then upload the results from the GPU memory 

space back to the host. The CUBLAS library also provides 

helper functions for writing and retrieving data from the 

GPU. 

The NVIDIA
®
 CUDA

TM 
CUSPARSE library contains a set 

of basic linear algebra subroutines used for handling sparse 
matrices and is designed to be called from C or C++. These 
subroutines include operations between vector and matrices 
in sparse and dense format, as well as conversion routines 
that allow conversion between different matrix formats. 

CUBLAS and CUSPARSE are written using the CUDA 
parallel programming model and help to overcome the 
challenge to develop application software that transparently 
scales its parallelism to leverage the increasing number of 
processor cores. 

III. RESULTS AND DISCUSSIONS 

For experimental purposes we used the real projections 

and the reference images acquired from the Hospital Clinico 

Universitario in Valencia. We worked with fan-beam 

projections collected by a scanner with 512 sensors in the 

range 0 - 180 with 0.9 degree spacing. To be able to 

reconstruct the image with the iterative method we complete 

the given set up to 360 degrees using the symmetric structure 

of the system matrix. In order to analyze the capacity of 

iterative algorithms to reconstruct images from less number 

of projections, from the initial set  three sets of equally 

spaced (with the angle steps 0.9, 1.8, and 3.6 degrees) 

projections have been derived. 
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The results have been measured on a one GPU card of the 

cluster system Euler that belongs to the Alicante University 

in Spain.  The GPU computing node consists of 2 x CPU 

Intel Xeon X5660, each with 6 cores of 2,80 GHz and  3 x 

GPU NVIDIA TESLA M2050 with 448 cores  and 3GB 

memory each of them. 

For the images of 256x256 and 512x512 pixels the solving 

time of the system (1)  on  a one CPU  and a one  GPU card  

is given in Table 1.  The GPU time corresponds to the 

execution time of operations on a device not taking into 

account time spent in queues. The standard deviation of the 

results after running the application ten times is 2.9e-004.  In 

the system matrix, the number of rows is obtained by 

multiplying the number of used sensors and angles and 

corresponds to the number of the projections used to 

reconstruct the image; the number of columns corresponds to 

the size of the reconstructed image (256x256  and 512x512 

pixels).  

TABLE 1. THE RECONSTRUCTION TIME OF IMAGES ON CPU AND GPU ON 

EULER CLUSTER 

System Matrix (rows x 

columns) 

CPU (seconds) One GPU card 

(seconds) 

M1 = (256x100) x (256x256) 2.7 0.1569 

M2 = (256x200) x (256x256) 5.3 0.3056 

M3 = (256x400) x (256x256) 10.5 0.6127 

M4 = (512x100) x (512x512) 12.3 0.6584 

M5 = (512x200) x (512x512) 24.4 1.2741 

 

The results show the efficiency of the algorithm based on a 

GPU parallel computing ability. SpeedUp of 19.2 has been 

achieved to reconstruct images of 512x512 pixels. 

Comparing with the best results presented in [12] 

(reconstruction of 350x350x9 images requires 67 seconds on 

a single GPU), we see that our implementation (considering 

2D case) allows to reconstruct images with higher resolution 

and in much less time.   

TABLE II.  QUALITY COMPARISON BETWEEN REFERENCE  AND 

RECONSTRUCTED IMAGES OF 512X512 PIXELS 

N of Angles MSE PSNR 

100 0.0143 66.9300 

200 0.0110 67.8019 

400 0.0100 68.3378 

  

Also the quality comparison between reference images and 

images reconstructed from different number of angles has 

been made and the quantitative results are summarized in 

Table 2. To compare the images Mean Square Error (MSE) 

and Peak Signal to Nose Ratio (PSNR) functions have been 

used. The results show that iterative LSQR algorithm allows 

the reconstruction of images of a good quality from less 

number of angles or, consequently, projections. This might 

be useful in situations when the complete set of projections is 

not physically possible. For example, in scanners that might 

be used to realize urgent examination at any place. They do 

not provide equally spaced data, so, the algebraic 

reconstruction is more suitable for these devices. 

Fig. 2 shows the images reconstructed in parallel from 

different number of equally spaced projections. It is needed 

to be mentioned that usually post processing procedure (as 

filtering) is applied to the reconstructed image in order to 

improve the quality. In this work we present the images right 

after the reconstruction stage without any filtering. 

 

 

Figure 2.  Reconstructed images (512x512 pixels): a) reference images; b), 

c), d) iterative reconstruction from 400, 200 and 100 angles at the iteration 

12 when the given tolerance is achieved 

Finally, Fig. 3 illustrates the capacity of the iterative 

algorithm to reconstruct images from incomplete and 

unequally spaced data while FBP fails to do that. 

 

Figure  3.   Reconstruction from incomplete data: (a) LSQR  and (c) FBP- 

reconstruction from the set with removed angles (256 sensors x 170 

angles);   (b) LSQR  and (d)  FBP -  reconstruction from the set  with 

removed sensors (226 sensors x 200 angles ). Removed angles and sensors 

have been chosen arbitrary. 
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IV. CONCLUSIONS 

The GPU-based iterative algorithm of image 

reconstruction presented in this paper shows that the iterative 

methods are capable to reconstruct images with low 

computational cost.  

CUDA parallel programming model with CUBLAS and 

CUSPARSE libraries allow overcoming the challenge to 

solve complex computational problems and take advantage 

of the computational resources of the NVIDIA graphics 

processor (GPU). 

 We believe that more significant results could be achieved 

in  3D image reconstruction when a huge amount of 

computing is involved.   
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