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Abstract— Amide proton transfer (APT) imaging offers a 

novel and powerful MRI contrast mechanism for quantitative 

molecular imaging based on the principle of chemical exchange 

saturation transfer (CEST). Asymmetric magnetization transfer 

ratio (MTRasym) quantification is crucial for Z-spectrum analysis 

of APT imaging, but is still challenging, particularly at clinical 

field strength.  This paper studies the accuracy and uncertainty 

in the quantification of MTRasym for APT imaging at 3T, by 

using high-order polynomial fitting of Z-spectrum through 

Monte Carlo simulation. Results show that polynomial fitting is 

a biased estimator that consistently underestimates MTRasym. 

For a fixed polynomial order, the accuracy of MTRasym is almost 

constant with regard to signal-to-noise ratio (SNR) while the 

uncertainty decreases exponentially with SNR. The higher order 

polynomial fitting increases both the accuracy and the 

uncertainty of MTRasym. For different APT signal intensity 

levels, the relative accuracy and the absolute uncertainty keep 

constant for a fixed polynomial order. These results indicate the 

limitations and pitfalls of polynomial fitting for MTRasym 

quantification so better quantification technique for MTRasym 

estimation is warranted. 

I. INTRODUCTION 

Chemical exchange (CE) between free water and 
biological macro-molecules containing exchangeable labile 
protons has been recently exploited as a sensitive magnetic 
resonance imaging (MRI) contrast enhancement mechanism. 
Chemical exchange MR imaging can be performed by 
chemical exchange saturation transfer (CEST) imaging [1, 2], 
T1rho spin-lock imaging [3] or the combined version of 
chemical exchange spin-lock (CESL) imaging [4, 5]. In 
CE-MRI, a long saturation radio frequency (RF) pulse is 
applied at different irradiation offset frequencies and the MR 
signals are acquired. Z-spectrum is referred as the plot of the 
signal intensity ratios compared to the unsaturated signal 
intensity as a function of offset frequency (ΔΩ) from water 
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resonance. To eliminate direct water saturation (DS) effect 
and conventionall magnetization transfer (MT), asymmetric 
magnetization transfer ratio (MTRasym) is calculated from 
Z-spectrum. Voxel-wise map of MTRasym provides a heuristic 
but powerful means of CE-based contrast visualization so as 
for tissue characterization and lesion detection. In particular, 
the MTRasym at around 3.5ppm of Z-spectrum visualizes the 
amide proton transfer (APT) effect and this APT contrast has 
been shown promising for non-invasive molecular MR 
imaging with high sensitivity for various pre-clinical and 
clinical applications [6-10]. The accurate and precise 
quantification of MTRasym is still challenging. Despite the 
intrinsic low level of CE contrast particularly at low MRI field 
strength B0, DS effect cannot be completely eliminated and 
conventional MT may not be symmetric. Errors arise also 
from the heterogeneities of tissues and B0/B1 field 
inhomogeneity. Full Bloch equation fitting of Z-spectrum is 
extremely difficult due to the complicated dependence of 
Z-spectrum on many parameters. Therefore, Z-spectrum curve 
fitting without applying a priori model is usually applied in 
practice, such as the most widely used high-order polynomial 
fitting and the recently proposed smoothing-spline fitting [11]. 
In this study, we aim to quantitatively evaluate the accuracy 
and uncertainty of MTRasym by using polynomial fitting with 
different orders at different SNRs for APT imaging at 3T 
through Monte Carlo simulation. This work will be helpful for 
the optimization of APT imaging protocol and Z-spectrum 
analysis, as well as the clinical interpretation of MTRasym.   

II. METHODS 

A. Theoretical model and generation of APT Z-spectrum  

Theoretical Z-spectra without any noise were generated 
according to an asymmetric population two-pool (pool a: 
water; pool b: amide proton at 3.5ppm offset, i.e. ~448Hz 
offset at 3T) R1rho relaxation model [12] based on 
Bloch-McConnell equations [13]. Z-spectrum could be 
analytically calculated by [4]:  
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where M(ΔΩ) and M0 denote the signal intensity obtained with 
the saturation RF pulse with the duration of Tsat and strength 
B1 at offset ΔΩ and without saturation pulse. θ is calculated as 
arctan(2πγB1/ΔΩ). Rex is a complicated term that reflects the 
relaxation variation due to chemical exchange, dependent on 
each pool population (pa>>pb, pa+pb=1) and resonant 
frequency, proton exchange rate k and saturation pulse B1 
strength. The detail of this modeling could be found in the 
literatures [4, 5, 12, 14]. R1 and R2 are the population 
averaged tissue spin-lattice relaxation rate and spin-spin 
relaxation rate, the reciprocal of spin-lattice relaxation time T1 
and spin-spin relaxation time T2, respectively. MTRasym could 
be calculated by: 
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Major parameters were set as follows: B0=3T, ΔΩa=0, 

ΔΩb=3.5ppm, k=20/s, T1=1100ms and T2=69ms (typical 

values for white matter at 3T) [15]. To simulate different 

intensities of APT MTRasym, pb varied from 0.001 to 0.01. The 

B1 strength and duration of the saturation RF pulse was set as 

2µT and 1500ms. Z-spectrum data were obtained using an 

optimized acquisition protocol [16] at the offsets of [±7, ±6, 

±5.5, ±5, ±4.5, ±4, ±3.75, ±3.5, ±3.25, ±3, ±2.5, ±2, ±1.5, ±1, 

±0.75, ±0.5, ±0.25, 0] ppm, with higher sampling density 

around APT offset of 3.5ppm and water resonance. The true 

APT MTRasym was calculated at ΔΩ=3.5ppm using Eq. 2. 

B. Monte Carlo simulation and data analysis 

After ideal Z-spectra were generated, Rician noise [17] 
was imposed on each data point according to the image SNR 
to produce the noisy Z-spectra. SNR was defined as M0/σ, 
where σ was the standard deviation (STD) of noise 
distribution. Then the noisy Z-spectra were least-square fitted 
by high-order polynomial-fitting. After fitting, Z-spectra were 
interpolated to a finer resolution of 0.01ppm. The actual water 
resonance was assumed to be at the frequency with the lowest 
intensity of the interpolated Z-spectrum. The original 
Z-spectra were shifted correspondingly along the offset axis to 
correct the possible B0 inhomogeneity [7]. Finally, the APT 
MTRasym was calculated using Eq. 2 at ΔΩ=3.5ppm. This 
procedure repeated 50,000 times for each combination of 
polynomial order n, SNR and pb. Each MTRasym was recorded 
for statistical analysis purpose.  

III. RESULTS AND DISCUSSION 

For every combination of polynomial order n, SNR and pb, 
the calculated MTRasym (50,000 times) all showed Gaussian 
distribution. Hence, the accuracy and uncertainty of APT 
MTRasym could be evaluated respectively by the mean and the 
STD of the calculated MTRasym. 

Figure 1 illustrated two examples of noiseless ideal 
Z-spectrum, Rician-noise imposed data points at different 
offset frequencies, least-squared polynomial (n=12) fitted 
Z-spectrum as well as the true and calculated MTRasym curves 
at two different SNRs of 20 (a) and 100 (b) when pb=0.01. The 
true APT MTRasym at 3.5ppm obtained from the noiseless 
Z-spectrum was 0.0856, i.e. 8.56% of the unsaturated intensity 
M0. Due to the relatively low SNR in Fig.1a, the polynomial 

fitted Z-spectrum deviated much from the noiseless ideal 
Z-spectrum and hence led to the error in MTRasym estimation. 
Even at a very high SNR of 100 (Fig.1b), although the noisy 
Z-spectrum approaches the ideal one very much, the deviation 
of the calculated MTRasym from the true values was still 
noticeable.  

 

Fig. 1. Illustration of the noiseless ideal Z-spectrum, Rician-noise imposed 
data points at different offset frequencies, least-squared polynomial (n=12) 
fitted Z-spectrum as well as the true and calculated MTRasym curves at two 
different SNRs of 20 (a) and 100 (b) when pb=0.01.  

Figure 2 shows the accuracy (a) and uncertainty (b) of the 
calculated APT MTRasym by using polynomial fitting with 
different orders through Monte Carlo simulation.  For each 
polynomial order n, the mean of the calculated APT MTRasym 
was almost constant (except at very low SNR<20), regardless 
of SNR. In other words, the accuracy of the calculated 
MTRasym was independent of SNR for polynomial fitting with 
a fixed order. Although the polynomial fitting with higher 
order n remarkably increased the quantification accuracy, 
more approaching the true MTRasym, all polynomial fitting 
showed biased under-estimation of MTRasym. As seen from 
Fig.2b, for each polynomial order n, the uncertainty of 
MTRasym decreased exponentially with the increasing SNR, 
which indicated the precision of MTRasym quantification 
greatly improved from the higher SNR. On the other hand, 
higher-order polynomial fitting exhibited increased 
uncertainty although they showed better estimation accuracy 
compared to the low-order fitting. 

The dependence of accuracy and uncertainty of MTRasym 
quantification on the polynomial order n at a fixed SNR of 80 
was shown in Fig 3. Consistent with Fig 2, the accuracy and 
uncertainty of MTRasym both generally increased with the 
higher polynomial order n. In addition, it was found that the 
mean MTRasym approached the true MTRasym asymptotically 
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with the increasing polynomial order. This indicated that very 
high order (n>25) polynomial fitting could provide unbiased 
estimation of MTRasym. However, this unbiasedness of 
MTRasym estimation was associated with the greatly increased 
estimation uncertainty. It was also interesting to find that the 
accuracy and uncertainty did not increase smoothly with 
polynomial order. For example, the accuracy of MTRasym 
increased abruptly from n=8 to n=9. The accuracy of MTRasym 
was almost constant for n=9-12 but increased remarkably 
when n=13.  

 
Fig. 2.Monte Carlo simulation result of the accuracy (a) and uncertainty (b) 

of the calculated APT MTRasym by using polynomial fitting. pb=0.01. 

 
Fig. 3. Dependence of accuracy and uncertainty of MTRasym quantification 

on the polynomial order n. SNR=80 and pb=0.01.  

 

Fig. 4. The linear relationship between pool b population pb and true 

MTRasym.  

 

Figure 4 shows the relationship between the population of 
pool b (pb) and the true APT MTRasym. It is found that true 
APT MTRasym increases linearly with  pb, consistent with the 
theoretical [18] and experiment results [5] for low chemical 
exchange rate k in the literature.  

 

 
Fig. 5. The dependence of relative accuracy (left column) and absolute 

standard deviation of MTRasym (right column) on SNR and different true 

APT MTRasym intensities for polynomial order n=12, 14 and 18. 

 

 For different APT signal intensity levels, the dependences 

of the accuracy (left column) and the uncertainty of the 

calculated MTRasym (right column) subject to different SNRs 

are plotted in Fig. 5. Note that the relative accuracy, which 

was defined as the mean of the calculated MTRasym divided by 
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the corresponding true MTRasym at a certain SNR, was plotted 

in Fig. 5 rather than the absolute accuracy shown in Fig. 2-3. 

As shown in Fig. 5, the relative accuracy generally did not 

vary with regard to SNR as well as the true MTRasym. 

Meanwhile, the absolute uncertainty evaluated by the standard 

deviation of the calculated MTRasym, although exponential 

decayed with SNR, was not dependent on the true APT 

MTRasym and remained constant. This finding indicated the 

increasing difficulty in achieving high precision of MTRasym 

quantification for lower APT signals since the ratio of the 

absolute uncertainty and true MTRasym became larger.  

 This simulation study examined the numerical performance 

of high-order polynomial fitting for MTRasym quantification in 

APT imaging. The results indicated the limitations and pitfalls 

of high-order polynomial fitting for MTRasym quantification. 

The increased SNR, which is usually associated with the 

longer scan time, only reduces uncertainty but not improve 

accuracy. In addition, high-order polynomial fitting is biased 

and underestimates MTRasym unless very high polynomial 

order is used, which however inevitably deteriorates the 

uncertainty. Due to these limitations, the MTRasym calculated 

by using polynomial fitting in practice, particularly at low 

SNRs, should be very carefully interpreted. 

 This study has some limitations. It only includes simulation 

and experimental verification should be conducted in the 

future. This study only handles with Rician noise that is only 

valid for single-coil acquisition. Under multi-coil acquisition, 

parallel imaging and various image filters, the altered noise 

characteristics may potentially affect the polynomial fitting 

results. Currently, Z-spectrum and MTRasym is usually 

analyzed and quantified by non-parametric regression 

approaches because the underlying physical model is so 

complicated. Spline [11] and radial-basis-function networks 

[19] may be useful alternatives to polynomial fitting, which 

will be investigated in future studies. 

IV. CONCLUSION 

Several conclusions could be drawn from this study. 

Polynomial fitting is a biased estimator that consistently 

underestimates MTRasym unless the polynomial order is 

sufficiently high. For a fixed polynomial order and APT signal 

intensity, the accuracy of MTRasym is almost constant with 

SNR while the uncertainty decreases exponentially with SNR. 

The higher order polynomial fitting increases both the 

accuracy and the uncertainty of MTRasym. For different APT 

signal intensity levels, the relative accuracy and the absolute 

uncertainty keep constant for a fixed polynomial order fitting. 

Due to these numerical limitations and pitfalls, MTRasym 

quantified by using high-order polynomial fitting in practice 

should be carefully interpreted. Better estimators are 

warranted in the future studies to improve accuracy and 

precision of MTRasym quantification.  
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