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Abstract— This paper proposes a new solution for local
binary fitting energy minimization based on graph cuts for
automatic brain structure segmentation on magnetic resonance
images. The approach establishes an effective way to embed the
energy formulation into a directed graph, such that the energy
is minimized by maximizing the graph flow. Proposed and
conventional solutions are compared by segmenting the well-
known BrainWeb synthetic brain Magnetic Resonance Imaging
database. Achieved results show an improvement on the com-
putational cost (about 10 times shorter) while maintaining the
segmentation accuracy (96%).

Index Terms— Implicit active contours, Local binary fitting,
Level set, Graph cuts, MRI segmentation.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) from brain can pro-

vide important information for diagnosis, therapy planning

and execution, and monitoring the progress of diseases or

treatments. Such assessment depends on the proper detec-

tion of boundaries between brain structures. MRI is prone

to suffer from Intensity Non-Uniformity (INU) across the

images. INU manifests itself as a smooth intensity variation,

and it is caused by radio frequency (RF) pulse attenuation in

tissue, non-uniform RF coil transmission and sensitivity, non-

uniformity in the scanner’s magnetic field, gradient-induced

eddy currents, RF standing waves, magnetic susceptibility of

tissue, and inter-slice cross talk [1].

Active contour models (ACM) are commonly used for

dealing with INU in the segmentation stage. Specifically,

geometric active contours are implicit level set functions

defined on a higher dimension, which evolve according to

a partial differential equation (PDE). Usually, the evolution

equation is the minimization solution of an energy formula-

tion, obtained by variational calculus. Aiming to overcome

the INU, local energy formulations have been proposed.

ACM based on Local Binary Fitting (LBF) energy is one

of such local formulations, where the energy is computed by

means local weighted average operators [2]. Segmentation

results using LBF have been demonstrated to deal effectively

with bias illumination issues for many kinds of images.

Nevertheless, the number of operations required to compute

the energy implies a higher computational cost. Furthermore,

the algorithms for solving accurately PDEs need a large

number of iterations to converge.

Bearing the above in mind, this work discusses the

minimization of the LBF to be solved by embedding the

energy into a directed graph and, then, maximizing the flow
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between the two terminals of the graph. Since the maximum

flow algorithm allows to minimize the LBF over the whole

image domain, a considerably smaller number of iterations

is required. Performance of both, traditional and proposed,

approaches are compared by segmenting the well-known

BrainWeb synthetic brain MRI database. Achieved results

show an improvement, regarding the solution by PDE, on

the computational cost (as much as 10 times shorter) while

maintaining the high segmentation accuracy (96%).

II. BACKGROUND

A. Implicit active contour as level set functions

Let Ω ⊂ R
2 be the image domain, where each pixel is

denoted as x ∈ Ω, and f be a given image that is a mapping

of the form: f : Ω→ R, x 7→ f(x). Besides, defined on Ω,

a level set function φ is considered that separates the image

domain into two subregions (Ω+ and Ω−) by a boundary

Γ ∈ Ω, such that:

Ω+ = {x : φ(x) > 0} (1a)

Ω− = {x : φ(x) < 0} (1b)

Γ = {x : φ(x) = 0} (1c)

Grounded on the piecewise constant energy εCV (Λ) ∈
R
+, which is given in terms of the parameter set Λ, a basic

formulation of implicit active contours is as follows [3]:

εCV (Λ) = λ1

∫

Ω+

‖f(x)− f1‖
2dx

+ λ2

∫

Ω−

‖f(x)− f2‖
2dx+ r(x) (2)

where f1 and f2 correspond to the average value of the image

f on the subregions Ω+ and Ω−, respectively; operator ‖ · ‖
stands for the Euclidean norm; parameters λ1, λ2 ∈ R

+ are

energy weighting factors for each region, which are usually

set heuristically; and r ∈ R
+ stands for an introduced

regularization term, which is usually employed to avoid

algorithm reinitialization and spurious solutions [4].

Nevertheless, since the main assumption of such approach

is that the image aims to be constant along each region, solu-

tions using Equation (2) are not able to deal with illumination

bias, where image properties inside each subregion can vary

smoothly [2].

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5131



B. Implicit active contours driven by local binary fitting

energy

Aiming to avoid such a problem, [2] proposes a level set

formulation based on the estimation of an energy function

around each pixel x in the image, known as local binary

fitting energy, which is defined as:

εLBF (Λ,x) = λ1

∫

Ω−

K(x− y)‖f(y)− f1(x)‖
2dy

+ λ2

∫

Ω+

K(x− y)‖f(y)− f2(x)‖
2dy (3)

where K(·) ∈ R
+ is an introduced kernel function that

makes functions f1 and f2 behave as local averaging opera-

tors (or prototypes) over each pixel for both regions, which

are computed as:

f1(x) =
K(x) ∗ (H(φ(x))f(x))

K(x) ∗H(φ(x))
(4a)

f2(x) =
K(x) ∗ (1 −H(φ(x))f(x))

K(x) ∗ (1−H(φ(x)))
(4b)

being H(·) the Heaviside function. Notation ∗ stands for the

convolution operator.

By marginalizing out the variable x in Equation (3) and

including two regularization terms that depend on the contour

Γ length, l(Γ), as well as the region Ω− area, a(Ω−), the

total energy function can be recomputed as:

εLBF (Λ) =

∫

Ω

εLBF (Λ,x)dx+ µl(Γ) + νa(Ω−) (5)

where µ ∈ R
+ and ν ∈ R

+ are the given weighting factors

for the contour length and region area, respectively.

The implicit active contour solution for Equation (5) using

gradient descent optimization and variational calculus is

given by:

∂φ

∂t
=− δ(φ)(λ1d1(x)− λ2d2(x)) + νδ(φ)div

(

∇φ

|∇φ|

)

+ µ

(

∇2φ− div

(

∇φ

|∇φ|

))

(6)

where div(·) and ∇ stand for divergence and gradient

operators, respectively; δ(·) is the smooth Dirac function;

functions d1, d2 ∈ R
+ representing distance for each pixel

x to regions Ω− and Ω+, respectively, are computed as:

d1(x) =

∫

Ω

K(y − x)‖f(x)− f1(y)‖
2dy

d2(x) =

∫

Ω

K(y − x)‖f(x)− f2(y)‖
2dy

C. Local binary fitting solution by graph cuts

The energy minimization of some variational methods can

be performed by embedding effectively the energy function

into a directed graph [5]–[7]. The graph set G = {V,E}
is composed of a subset of nodes V and directed edges E

connecting them. In general, it is assumed that each pixel xi

corresponds to a node vi ∈ V. Two additional nodes, denoted

as terminals, are included: a source and a sink, labelled as

s and t, respectively. Such nodes are related to the labels

of both regions (Ω− and Ω+, respectively). Regarding the

edges, two kind of connections can be considered: n-links,

connecting pairs of neighboring pixels (eij ∈ R
+) and t-

links, connecting each pixel with both terminals (esi ∈ R
+

and eit ∈ R
+).

Since terms in Equation (3) represent the affinity or

linkage from each pixel to regions Ω− and Ω+, this work

proposes the LBF energy to be further embedded into the

graph, as follows:

eij := 0

esi := λ1

∫

Ω−

K(xi − y)‖f(y)− f1(xi)‖
2dy

eit := λ2

∫

Ω+

K(xi − y)‖f(y)− f2(xi)‖
2dy

Therefore, the binary segmentation can be reformulated

as a task searching for the s-t-cut C = {S,T} with the

maximum flow ϕ(C) from s to t. A cut C is a partition

of the vertices V into two sets S,T ⊂ V, subject to s ∈ S,

t ∈ T, S ∪ T = V and S ∩ T = ∅. The flow value in a graph

G given the cut C is computed as:

|ϕ(C)| =
∑

v∈V
esv (7)

As a result, the optimal vertex sets S and T are obtained

corresponding to the regions Ω− and Ω+, respectively.

III. EXPERIMENTAL SETUP

A. Database description

Proposed method is tested in a common MRI brain seg-

mentation task consisting of separating white matter (WM)

tissue from gray matter tissue (GM). Simulated MRI data set,

generated with the Internet connected MRI Simulator at the

McConnell Brain Imaging Centre in Montreal1, is consid-

ered for evaluating the approach performance [8]. The pre-

computed simulated MRI volumes for normal brain database

was employed with the following parameters: T 1 image

modality, 1mm×1mm×1mm voxel size, 3% noise, intensity

non-uniformity (INU) values of 0%, 20%, 40%, coronal axis

slices and slice size 512×512 pixels. An example from MRI

database is shown in Figure 1. In this paper, the assessed task

is the well-known brain segmentation, i.e., white matter/gray

matter segmentation. Since the MRI are simulated, the tissue

label is known and employed as the golden standard for

comparing the approaches.

B. Parameter selection and implementation

The proposed energy minimization, based on graph cut

(GC), is compared to the traditional solution by variational

equations and partial derivatives (PD). Since both approaches

are based on the local binary fitting energy formulation,

parameter values employed for the experiments, shown in

Table I, are chosen as suggested in [2] and kernel function

K(·) is assumed as Gaussian. However, it is worth noting
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(a) 0% (b) 20% (c) 40%

Fig. 1. Simulated MRI sample for the considered INU values for a sagittal
slice.

Parameter
Solution method

PD GC

τ Time step 0.1 –

σ Gaussian kernel scale 3.0 3.0

λ1 Weighting of the inside re-
gion energy

1.0 1.0

λ2 Weighting of the outside
region energy

1.0 1.0

µ Curve length regulariza-
tion

1.0 –

ν Inside region area regular-
ization

0.003 × 2552 –

TABLE I

EMPLOYED PARAMETER VALUES IN THE EXPERIMENTAL SETUP FOR

BOTH ENERGY MINIMIZATION APPROACHES.

that no regularization or time step parameters are required

when using the proposed approach.

Furthermore, convolution operations in Equations (4a) and

(4b) are efficiently computed by the Fast Fourier Transform,

while term λ1d1(x)−λ2d2(x) is solved as a weighted sum of

three convolutions. Additionally, derivatives in Equation (6)

are estimated by finite differences, as discussed in [9].

Finally, regarding the segmentation using graph cuts, the

optimal cut is computed by using the Boykov-Kolmogorov

algorithm for max-flow/min-cut problems [7].

C. MRI segmentation performance

In the present work, the proposed approach for LBF

energy minimization by Graph Cuts is compared to the

baseline minimization by Partial Derivative Equations. In

the considered MRI segmentation task, the performance of

both approaches is measured in terms of their computational

cost and their segmentation accuracy. The former is carried

out by means of the algorithm time consumption until its

convergence to any solution, while the latter is achieved by

using the dice overlap coefficient, defined as:

DOC =
2tP

2tP + fP + fN
(8)

where tP , fP , and fN represent the true positive, false

positive and false negative pixels, respectively.

Considered regions in the database are white and gray

matter, while the phantom of the simulated images is taken

as the ground truth. The proposed approach is compared

to the standard LBF solved by variational calculus and

partial derivatives. Figure 2 depicts a concrete result for

1http://brainweb.bic.mni.mcgill.ca/brainweb/

(a) Ground Truth (b) Initial contour

(c) GC: 1st Iteration (d) GC: 2nd Iteration (e) GC: 3rd Iteration

(f) VC: 5th Iteration (g) VC: 50th Iteration (h) VC: 100th Iteration

Fig. 2. Comparison of the proposed method with conventional LBF model
solution on 40% INU MRI slice. The ground truth and initial contour are
plotted on top. The contour evolution for the proposed approach is plotted
on the middle row. Results for the conventional LBF solution are depicted
on the bottom.

an MRI slice for both tested approaches. As seen, the

proposed approach segments successfully gray matter after

three iterations, while the baseline takes a hundred itera-

tions to converge. Achieved performance results for time

consumption versus the number of pixels to segment as

well as the segmentation accuracy versus INU are shown

in Figures 3(a) and 3(b), respectively.

IV. DISCUSSION

Figure 3(a) shows the time consumption versus the number

of pixels to segment for three levels of INU using both

considered approaches. For the proposed approach, the larger

the number of pixels, the larger the time spent to segment the

image. Such behavior is expected, since the computational

cost of the maximum-flow algorithm depends on the number

of nodes in the graph. Nevertheless, it is important to

highlight that overall computational cost of the proposal is

about ten times less than the baseline. Additionally, it is

worth noting that for both approaches the time consumption

is statistically equivalent along the INU. Therefore, it can be

inferred that the INU does not influence the computational

cost for the considered image segmentation task.

Results regarding the segmentation accuracy (Figure 3(b))

show that for both approaches the larger the INU, the

worse the performance, which is expected since the INU

phenomenon implies a more complex segmentation task.

Nevertheless, the achieved accuracy (96%) reaches the state-

of-the art results for the considered database. Moreover, it
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(a) Computational cost
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(b) Accuracy

Fig. 3. Performed computational cost and segmentation accuracy for
both considered approaches: the LBF model solved by partial derivatives
(continuous line) and graph cut (dashed line). a) CPU time (in seconds)
versus the number of pixels per slice, b) Dice overlap coefficient versus
INU value for brain white matter and gray matter

can be seen that the accuracy decay rate is higher for the

baseline than for the proposed approach.

Finally, results in Figure 2 show faster convergence of the

proposed approach than the conventional one. One of the

reasons for such behavior is the time step limitation in the

solution by variational calculus. Small values of the time

step are required to achieve a stable solution, but yields

to small changes in the level set function and slows down

the convergence time. On the other hand, large evolution

movements are performed with large time step values, but

the convergence is not guaranteed. All of this issues are

avoided by the graph cut method, since it can see the whole

picture of the problem without requiring any time step value.

Nevertheless, it has to be highlighted that no regularization

terms were included in the proposed approach; but for some

problems, regularization can be required to control not only

the size, but also the shape of the solution. Dealing with such

kind of terms are let as future work, since not all the energy

formulations can be embedded into a graph cut problem [6].

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new solution for local binary fitting energy

minimization towards MRI segmentation is introduced. The

proposed approach embeds the energy into a graph and

minimizes it by maximizing the flow in the graph. In this

way, the properties of the LBF to deal with INU are exploited

while reducing the time consumption. Additionally, achieved

results prove an accurate segmentation.

Two main tasks are let as future work: Firstly, performance

of the methodology has to be evaluated in other kind of

medical images and body structures; and secondly, other

implicit active contour models have to be formulated as a

graph cut problem, such that they include shape constraints

and need less computational cost.
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