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Abstract—Manual segmentation of ultrasound contrast 

images is time-consuming and inevitable to variability, and 

computer-based segmentation algorithms often require user 

interaction. This paper proposes a novel level set model for fully 

automated segmentation of vascular ultrasound contrast images. 

The initial contour of arterial boundaries is acquired based on 

an automatic procedure. The level set model moves the initial 

contour towards the boundaries of arterial inner wall based on 

minimization of the energy function. The traditional energy 

function is improved by introducing an edge detector based on 

image gradient and the standard difference image. Both spatial 

and temporal information of the image are considered, and the 

robustness and accuracy of the level set model is enhanced. 

Ultrasonic contrast images of living mouse are acquitted with 

high frequency ultrasound system. Images of carotid arteries are 

processed with our method. The segmentation results using the 

proposed method are evaluated against two observers’ 

hand-outlined boundaries, showing that computer-generated 

boundaries agree well with the observers’ hand-outlined 

boundaries as much as the different observers agree with each 

other.  

I. INTRODUCTION 

Hemodynamic parameters and arterial wall biomechanical 
properties are two important determinants of various 
cardiovascular diseases. Local hemodynamic factors 
participate in the physiopathology of atherogenesis, 
accounting for the focal nature of the atherogenic process [1], 
[2]. In a correlation-based image processing of two 
consecutive ultrasound contrast images of arterial flow, an 
interrogation window that contains the regions of blood flow 
and arterial wall respectively can be used to calculate 
hemodynamic parameters[3]–[5], and arterial elasticity 
[6]–[9]. The accurate delineation of arterial inner wall in 
ultrasound contrast images can obtain the exact interrogation 
window for the image processing.  

Considerable efforts have been made to develop effective 
ultrasound image segmentation methods for computer-aided 
diagnosis. A sophisticated threshold method was proposed to 
segment the ultrasound image that the object to be detected is 
homogeneous [10], but it is not applicable for the 
inhomogeneous ultrasound contrast images. A dynamic 
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programming method was used to search for global minimum 
of cost function which takes intensity and gradient into 
account [11], [12]. However, it is not able to capture deep 
concavities and sharp salience. A snake method was 
developed to segment the intima-media layer of far wall of 
common carotid artery (CCA) [13]. The problem is that 
snake-based methods may converge to wrong location if the 
initial contour is placed far away from the region of interest. 
Region growing based on window frame difference was 
proposed to detect the arterial inner wall in ultrasound particle 
image of both CCA and carotid bifurcation artery (CBA) [14]. 
Post processing, such as edge-linking, holes filling, is 
necessary to obtain the final boundaries. Level set active 
contour is a popular method in medical image segmentation 
due to several desirable advantages. First, it allows flexible 
topological changes of the evolution curve. Second, it 
produces continuous and smooth results. Third, it’s easily 
formulated under an energy optimization framework.  

This paper presents a modified level set method which 
considers both the spatial and temporal information of the raw 
image for fully automated segmentation of vascular 
ultrasound contrast images.   

II. MATERIALS AND METHODS 

A. Acquisition of ultrasound contrast image sequence 

The carotid arteries of 12 healthy mice were scanned in 
B-mode. All procedures in the animal studies adhered to our 
institution’s Animal Care and Use Committee guidelines. The 
age of the subjects was ranging from 8 to 12 weeks. Each 
mouse was anesthetized with isoflurane gas and laid on a 
platform in the supine position with legs taped to 
electrocardiographic electrodes for heart rate monitoring (380 
beats/min). Body temperature was maintained around 37 °C. 
The neck hair of each mouse was gently removed. After the 
mouse and the transducer were settled, UCAs were injected 
via caudal vein. The bubble concentration was about 10

7
 

bubbles/ml and the injection capacity adjusted according to 
the weight of the mouse. B-mode images of the mouse carotid 
artery were acquired by a Vevo2100 device (VisualSonics, 
Toronto, Canada) with a 30MHz MS-400 probe. The focal 
position was set at a depth of 8 mm to 11 mm.. All images 
were acquired with a frame rate up to 712 fps. For each mouse, 
frames were recorded so as to cover more than 2 cardiac 
cycles. Fig. 1(a) and 1(b) show the representative ultrasound 
contrast images of mouse carotid arteries. 
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Fig. 1.  Ultrasound contrast images of the mouse carotid arteries: (a) 

Common carotid artery, (b) Carotid bifurcation artery.  

B. Contour initialization 

Arterial blood flow and microbubbles therein move much 
faster than arterial wall and surrounding tissue. For 
consecutive ultrasonic contrast images, the intensity 
difference in the lumen region is much bigger than in the 
regions of arterial wall and tissue. The standard difference of 
several consecutive images can enhance the lumen region and 
suppress the regions of arterial wall and surrounding tissue.  
The standard difference matrix of a sequence of 2k+1 
consecutive frames was defined as 
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( , )I x y  raw image, ( , )I x y  mean value of the 2k+1 

consecutive images. Seven consecutive images were used and 
the standard difference images were shown in Fig. 2.  

An automatic method based on morphological filtering 

and thresholding is applied to the standard difference image to 

provide initial contour. The initialization procedure for both 

mouse CCA and CBA is as follows: 

1) Load the standard difference image (see Fig.2). 

2) Perform gray scale opening and closing on the standard 

difference image to eliminate sharp peaks and small 

islands in image [15]. They are presented as  

    , ,G x y D x y SE SE o                         (2) 

where  ,D x y  is the standard difference image, SE  is 

the structure element,  ,G x y  is the image obtained after 

opening and closing process. SE  was chosen as 9×9 for 

this step. 

3) Convert the image  ,G x y  to binary by thresholding [16]. 

Apply binary opening and closing to fill gaps and 

eliminate peaks to make the initial contour smooth. By 

superimposing the contours on the original images, the 

initial contour of mouse CCA and CBA were obtained. 

 

Fig. 2.  The standard difference images of the ultrasound contrast images of 

mouse carotid arteries based on 7 consecutive images: (a)CCA, (b) CBA .  

The initial contour overlapped on the raw image. (c)CCA, (d) CBA. 

 

C. The modified level set model  

As a self-adapting model, level set method moves the 

initial contour towards the boundaries of object based on 

minimization of an energy function. Generally, iterative 

algorithm is used to solve the problem. The energy function is 

defined as follows [17]. 
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where 
0
( , )u x y  is the image to be segmented, C  is the 

evolving curve, 
1

c  and 
2

c  represent average intensity inside 

and outside C  respectively,   is a smoothing coefficient 

and should be positive, 
1
  and 

2
  weight the function.  

The evolving curve C  in   is defined as the boundary of 

an open subset    (   ) which is the region inside C . 

The region outside C  is denoted as \ . The evolving 

curve C  can be represented as     , | , 0C x y x y  [18], 

where ( , )x y  is a Lipschitz-continuous function known as 

the level set function that satisfies 
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Then, the energy function is formulated as  
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H  is Heaviside function. The function  , termed as Dirac 

function, is derivative of H .  ,D x y  the standard difference 

images. 

An edge detector which depends on the gradient of the 

image was introduced. Generally, g  is defined as below [22] 
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where G


 is Gaussian kernel with standard deviation  , and 

I  is the raw image.  

However, the edge detector g  in equation (6) is not 

suitable for ultrasound contrast images. The reasons are: 1) 

existence of bright speckles in the ultrasound contrast image 

makes the intensity gradient at the arterial wall much smaller, 

2) Gaussian smoothing is isotropic diffusion which will 

smooth edge, and the curve may pass through the boundary 

and stop in the wrong position. Thus, an edge detector should 

be constructed considering the inherent properties of 

ultrasound contrast images.  

In this study, a new edge detector is constructed by 

following two steps. First, the raw ultrasound contrast image is 

subjected to a median filter and normalization process to make 
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the lumen homogenous and boundaries enhanced. The 

ultrasound contrast images are degraded by speckle noises and 

the existence of contrast agents makes the lumen region 

inhomogeneous and the arterial boundaries ambiguous. An 

adaptive weighted median filter is used to reduce the intensity 

variance in the lumen [19]. The filter image can be obtained 

as:  
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where ( ) ( , )X x y , 
0

( )I X is the raw image and ( )
k

I X


 to 

( )
k

I X  are the (2 1)k   frames before and after the raw image 

respectively,  
( ) [ , ]X m n

median


  denotes a median filter operator with 

a window size of m n . 

An image normalization method is followed [20]. Linear 

scaling of the image was performed by contrast stretch, 

histogram normalization and equalization. It can reduce the 

variability introduced by different equipments, operators, and 

gain settings, and to facilitate ultrasound tissue comparability 

[21].  

The second step is to apply the gradient vector flow 

algorithm to the filtered and normalized image ( )J X  to 

acquire the vector field and construct the edge detector. The 

gradient vector flow (GVF) is an edge preserving process that 

has the ability to move the contour into boundary concavities 

[22]. GVF is defined as the vector field ( ) ( , )V X u v that 

minimizes the energy function 
2 2 2

( ) ( ) ( ) ( )V X J X V X J X dX             (8) 

where ( )J X  is the filtered and normalized image. The 

parameter   governs the tradeoff between the first term and 

the second term of the integrand. The variational formulation 

of GVF makes the vector field has the property that it is nearly 

equal to the gradient of image at the boundary. The ( )V X can 

be found by solving a pair of Euler equations iteratively [23].   

The edge detector, g , in this novel level set model is 

constructed as,   
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The energy function is finally defined as: 
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The level set model investigates the evolution of    under 

the level set partial differential equation [24]: 
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where parameter
1
 , 

2
  and   are positive, besides,   is 

smooth coefficient which controls the smoothness of the 

evolving contour. 

III. RESULTS 

A series of 20 CCA and 20 CBA ultrasound contrast 
images of mice were used for validation. The proposed level 
set model was validated against manual delineations by two 
experts who know ultrasound contrast images very well. The 
average of the two manual delineations was considered as 
ground truth. A statistical and quantitative approach was used 
for performance evaluation. 

Ultrasound contrast images of mouse CCA and CBA are 
segmented using manual delineation, and the proposed level 
set model, and the results are presented in Fig. 3. The average 
of manual delineations of two expert radiologists was set to be 
ground truth, as shown in Fig. 3(a) and 3(b). The 
performances of the proposed level set model were 
demonstrated in Fig. 3(c) and 3(d). It is found that both CCA 
and CBA segmentation results of level set model are in good 
agreement to the ground truth. 

 

Fig. 3.  Segmentation results of ultrasound contrast images of mouse carotid 

arteries using the manual delineation, and the proposed level set model. 

 

In this paper, an overlap measure termed similar index was 

used for comparing the relative overlap value of two binary 

segmentation results. The similar index between automatic 

segmentation area and the ground truth is defined as follows: 

=
A T

S
A T

I

U
                                     (12) 

where A  is the segmentation area, T  is the ground truth, I  

is intersection, U  is union. The more match two 

segmentations are, the closer S  is to 1. 
LS

S  is the similar 

index between the level set model and the ground truth. 
M

S  is 

the similar index between two experts’ manual delineations. 

The inter-observer variability (
M

S ) was calculated as 0.91 ± 

0.02 on mouse CCA images, and 0.89 ± 0.06 on mouse CBA 

images. 
LS

S is 0.91 ± 0.01 on mouse CCA, and 0.88 ± 0.04 on 

mouse CBA. The time needed for segmenting one mouse 

CCA and CBA image is 6 and 11 seconds using the level set 

method. 

IV. CONCLUSION 

This paper proposes a level set approach for fully 

automated segmentation of vascular ultrasound contrast 

images. Our approach adopts an automatic initial contour 

acquisition procedure and a modified level set model that 

integrates both temporal and spatial image information. 

Ultrasound contrast images of mouse CCA and CBA were 
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acquired with high frame rate for performance evaluation of 

the approach. The segmentation results of the level set 

approach are evaluated against two observers’ hand-outlined 

boundaries, showing that computer-generated boundaries 

agree with the observers’ hand-outlined boundaries as much 

as the different observers agree with each other. In the future, 

we plan to test this level set approach in ultrasound contrast 

images of arteries with complex geometries like arteries with 

plaques or thrombosis. 
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