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Abstract— We present a new framework for image seg-
mentation with statistical shape model enhanced level sets
represented as a linear combination of non-Euclidean radial
basis functions (RBFs). The shape prior for the level set is
represented as a probabilistic map created from the training
data and registered with the target image. The new framework
has the following advantages: 1) the explicit RBF representation
of the level set allows the level set evolution to be represented
as ordinary differential equations and reinitialization is no
longer required. 2) The non-Euclidean distance RBFs makes
it possible to incorporate image information into the basis
functions, which results in more accurate and topologically
more flexible solutions. Experimental results are presented to
demonstrate the advantages of the method, as well as critical
analysis of level sets versus the combination of both methods.

I. INTRODUCTION

Image segmentation using the level set method involves
the maintenance of an implicit surface through a distance
function. The surface evolution is governed by a set of
partial differential equations (PDEs), commonly solved using
the finite difference scheme on sampled grid points. The
surface evolution however may develop step or flat gradients,
hence periodical reinitialization may be required to maintain
numerical stability. In recent years, radial basis functions
(RBFs) have been used in conjunction with level sets for
image segmentation.

The RBFs were originally used as a primary tool for
interpolation of multivariate scattered data because it does
not require any underlying mesh for interpolation. In 1990,
RBFs were extended by Kansa to approximate parabolic,
hyperbolic and elliptic PDEs systems in the field of com-
putational fluid dynamics [1]. Recently, RBFs have received
much attention for solving PDE systems [2]-[3] as well as
for image segmentation in combination with the level sets.
With this approach, instead of partial differential equations,
surface evolution is governed by a set of ordinary differential
equations, which is much easier to solve, reinitialization is
no longer necessary, and more complex topological changes
are readily achievable [4]. Several methods combining level
sets with RBFs have recently been published in the image
segmentation field. For example, Wimmer et al. used RBFs
to reconstruct a surface to initialize a level set algorithm
[5]. Turk et al. [6] introduced constraint points to model the
implicit level set surface using RBFs, which were applied
to implicit active contour modeling by Morse et al. [7].
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Gelas et al. [8] applied compactly supported RBFs to image
segmentation and introduced prior knowledge of shape by
placing the RBF centers quasi-uniformly over an uncertainty
area. Bernard et al. [9] formulated the segmentation problem
in a Maximum Likelihood framework using the Generalized
Gaussian as a priori distribution and minimizing the resulting
functional using a multiphase level set and RBF model.
Slabaugh et al. [10] proposed to use anisotropic Gaussian
kernels and optimized their orientation as well as their
weight, position and scales. Mory et al. [11] proposed to
build RBFs according to image features using non-Euclidean
distance and incorporated prior information by casting in-
side/outside labels as linear inequality constraints.

In spite of the potential advantages, the combination of
RBFs and level sets is relatively new in image segmentation.
Implementation of the approach can be complex and it is
still unclear what benefit and drawback this combination
can potentially bring for an application. In this paper we
detail a new framework for biomedical image segmentation
by combining the level set method with shape prior and
non-Euclidean RBFs to arrive at an accurate and efficient
image segmentation method. Existing approaches to integrat-
ing shape prior into RBFs include RBFs center placement
approaches [8], which are quite complex. We propose a new
approach to integrating shape prior to RBFs using a statistical
shape prior and introduce the non-Euclidean RBF within the
optimization framework of Gelas et al. [8]. Additionally, we
report experimental results as well as critical analysis of the
combination.

II. LEVEL SET WITH RADIAL BASIS FUNCTIONS

A RBF is a circularly-symmetric function centered in
a particular point. The sum of RBFs is typically used to
approximate functions. The level set function Φ can be
approximated by a linear combination of translated and
scaled RBFs centered around N points xi traditionally called
collocation points:

Φ(x) =

N∑
i=1

λiϕ (||x− xi||) (1)

where ϕ is the radially-symmetric non-negative kernel, xi
is the position of the known values hi in the interpolation
and λi is the weight of the RBF positioned at that point.
Euclidean distance is typically used as a distance function.

Eq.1 is used to calculate the unknown weights for the col-
location points xj satisfying the known values hi: Φ(xi) =

hi =
∑N
j=1 λiϕ (||xi − xj ||).
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The level set propagation can be achieved by considering
the front evolving along the normal direction according to a
localized speed function. It can be expressed as follows:

∂Φ(x, t)

∂t
= V (x, t) · δ(Φ(x, t)) (2)

where δ is a regularized version of the Dirac function and
V is a velocity function. Decomposing RBF as an implicit
function Φ(x, t) = ϕ · λ(t) by assuming that time and space
are separable and replacing this function into the Eq. 2, we
get the following expression:

H · ∂λ(t)

∂t
= B(λ(t), t) (3)

where Hij = ϕ(||xi−xj ||), B = V (xi, t) · δ(ϕ(xi) ·λ(t))
and λ are the scalar weights.

To solve the ordinary differential equation, Gelas et al. [8]
use a first order forward Euler method which lead them to
λn = λn−1− τ ·H−1 ·Bn−1(λn−1). As H−1 is not sparse,
the following evolution equation of the level set is defined
for optimization: 

H = L · L>
L · un = Bn(λ̃n−1)

L> · vn = un

λn = λ̃n−1 − τ · vn
λ̃n = α

||λn||1 · λ
n

where H is decomposed by Cholesky decomposition, n
indicates the iteration, α is a positive constant and τ is the
time step.

III. NON-EUCLIDEAN RADIAL BASIS

The Euclidean distance is commonly used in RBFs. As a
consequence RBF kernels are of spherical shape, resulting
over-smoothed shape representation. In order to improve the
segmentation, Mory et al. [11] proposed to use an image-
dependent non-Euclidean distance to build the RBF kernel.
In so doing, the RBFs are no longer spherical but determined
by the image features. The new formulation is as follows:

ϕi(x) = ϕ

(
||x− xi||gi

σi

)
(4)

where σi are the scales and gi is the metric function
chosen. The authors define the non-Euclidean distance from a
physical interpretation of fronts propagating from the center
points xi with the image-dependent speed function 1/gi.
In case of gi = 1, the Euclidean case is re-obtained. The
metric gi recommended for general cases is the local image
intensity distribution Pxi , estimated in the neighborhood of
xi: gi(x) = 1 − βlogPxi(I(x)) where β > 0 controls the
non-Euclidean part of the metric. The effect of the metric
is illustrated in Fig.1 where we show that bigger β is the
better the basis function will adapt to the image features.
A fast marching method is used to calculate the geodesic
distances between points [11].

(a) (b)

(c)

Fig. 1. The effect of the non-Euclidean distance metric. (a) Original Image
with a RBF center in the middle. (b) Spherical-shaped RBF with β = 0.
(c) Increasing the non-Euclidean part of the metric from left to right with
β > 0.

IV. REGION AND SHAPE PRIOR DEFINITION

Having defined the methods for explicitly representing
the level set surface using RBFs, we need to incorporate
it into the level set evolution to guide the segmentation
towards the object of interest. The Chan-Vese active contour
model [12] is a popular method for region-based level
set segmentation which aims at partitioning an image into
regions with piecewise constant intensity. The following
level set evolution equation minimizes the Chan-Vese model:
∂φ
∂t = δε[γ ·κ− (I− c1)2 + (I− c2)2] where I is the original
image, c1 and c2 are the average values of pixels inside and
outside the curve respectively, and κ is the curvature term
which makes the curve smooth weighted by γ. Due to the
intrinsic smoothness of the RBF formulation, the smoothing
term is omitted, and the velocity term referred in the Eq.2 is
simplified as follows: V (x, t) = −(I(x)−c1)2+(I(x)−c2)2.
The Chan Vese method is suitable for piecewise-constant
images but for more general cases, it can be replaced by
a maximum-likelihood criterion: V (x, t) = r1 − r2 where
ri(I(x)) = −logPi(I(x)) and P1 and P2 are the intensity
distributions [11]. In Fig.2, we show an example of min-
imization of a region-based functional with non-Euclidean
distance basis.

(a) (b) (c)

Fig. 2. Abdominal fat segmentation. (a) Original Image. (b). Segmentation
using non-Euclidean RBFs. (c). The level set function.
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In addition to the region term, we require prior information
to guide the evolution of the level set surface to a certain
shape. To do so we compute the average shape of a training
set and then align it using registration to the target image
[13]. As a result, we obtain a probabilistic map which is
mapped onto the level set framework as follows:

V (x) = µ1(−(I(x)−c1)2+(I(x)−c2)2)−µ2

(
log

Pin(x)

Pout(x)

)
where the first term is the Chan-Vese model that can

be replaced by any other suitable model according to the
image features [11] and the second term is the shape prior
term where Pin and Pout are the probability of the region
inside and outside the contour respectively, obtained from the
probabilistic map. µ1 and µ2 are the weights for the region
and prior terms respectively and are chosen empirically.

V. EXPERIMENTS

We test our method for segmentation of the myocardium
using fifteen datasets of different patients. Each dataset
contains among 26 to 57 frames. The ground truth is manu-
ally segmented by an expert. Experimental results with our
method are compared with the common level set technique
and that obtained using Euclidean RBFs. All methods use the
same energy terms and a single circle as an initial contour. In
order to make the level set more flexible topologically, we did
not implement the narrow band, the computation of a band
around the front instead of the whole image, to cope not only
with the endocardium but also the epicardium. This causes an
increase of the computational complexity of the algorithm,
whereas the radial basis representation allows more flexible
topologies without adding additional cost. According to the
experiments, the level set method produced more outliers due
to image noise. The level set re-initialization also caused
problems in some cases. On the other hand, the level set
gave sharper segmentations than the Euclidean RBFs in some
images. However, this trend is reversed when more RBFs
are added, or when non-Euclidean RBFs are used. Non-
Euclidean RBFs follow the image features better, allowing
closer initialization and therefore better convergence. Some
examples using the non-Euclidean basis function with shape
prior are shown in Fig.3.

To quantify the segmentation quality assessment, we com-
pute different performance measures: point to mesh distance
which indicates the distance between the segmentation and
the ground truth and overlap, sensitivity, specificity and
similarity 1.

Table I summarizes the average performance for all meth-
ods showing a better performance with our approach. The
distance between the ground truth and the segmentation is
smaller and the metric values for similarity, overlap and
sensitivity (fraction of pixels belonging to the myocardium
correctly detected) are higher. And for specificity (fraction of

1The performance measures are defined as [14]: Overlap =
TP

TP+FN+FP
, Sensitivity = TP

TP+FN
, Specificity = TN

TN+FP
and

Similarity = 2TP
2TP+FN+FP

where TP and FP stand for true positive
and false positive and TN and FN for true negative and false negative.

(a)

(b)

Fig. 3. Segmentation of the myocardium using our approach with two
different patients: a) Original data sets. b) Segmentation in white.

pixels not belonging to the myocardium correctly detected),
according to our experiments, the results remain the same
for all methods.

Myocardium
New Euclid. RBFs Level Sets

Distance (voxel) 0.76 0.77 0.79
Overlap 0.76 0.74 0.72
Sensitivity 0.80 0.77 0.75
Specificity 0.98 0.98 0.98
Similarity 0.87 0.85 0.84

TABLE I
AVERAGE PERFORMANCE MEASURES FOR CARDIAC SEQUENCES, FOR

THE PROPOSED APPROACH (NEW), THE EUCLIDEAN RADIAL BASIS

APPROACH, AND THE LEVEL SET METHOD.
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VI. CONCLUSION

We have implemented a new framework for medical image
segmentation using a statistical shape-based level set method
represented as a combination of non-Euclidean RBFs. As
described in [11], by using non-Euclidean distance, basis
functions can incorporate image features giving more ac-
curate results. To guide the segmentation to the object of
interest, we use a probabilistic map obtained as an average
shape of training data. The experiments suggest that our
method is robust and accurate even for noisy and low contrast
images.
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