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ABSTRACT
In CT-based clinical applications, segmentation of regions
of interest (ROIs) is a preliminary but vital step. The task
is, however, quite challenging, especially for 3D objects,
because suspicious ROIs are usually soft-tissue structures,
which include a various organs and anatomical objects while
sharing a small intensity dynamic range in CT images.
Furthermore, the ROIs usually vary significantly in size,
shape, and boundary conditions. Among considerable efforts
contributed to addressing the problem, live wire, also known
as intelligent scissors, has been recognized as an efficient
and robust tool for dealing with a wide range of 2D ROIs.
Such an approach provides full user control during the
process while minimizing human interaction to optimally
counterbalance automatic and manual approaches. In this
work, we improve our previous live-wire-based segmentation
of 3D objects and the experiment results show its efficiency
and robustness.

Index Terms— Lung cancer, liver cancer, CT, semi-
automatic segmentation, live wire

I. INTRODUCTION

CT has been used as a standard image modality for
assisting in screening, diagnosis, and treatment of cancers,
such as lung and liver. With the development of advanced
high-resolution scanners, detailed internal anatomy can be
visualized. It is possible to detect the disease in early
stages, enable accurate diagnosis, plan and treat the pa-
tient with CT guidance, and perform patient follow-ups.
In different stages of cancer management, segmentation of
regions of interest (ROIs), such as lymph node, tumor, and
nodule, is a preliminary but vital step. However, the task
is quite challenging because CT is limited in presenting
soft-tissue structures, including typical ROIs and various
organs. Furthermore, the ROIs may vary significantly in size,
shape, boundary condition, etc. Automatic approaches don’t
require human interaction but they are highly application
dependent. Manual methods always work, but they are too
time-consuming and cannot guarantee repeatable results.

In the literature, considerable efforts have been contribute
to develop semi-automatic methods to counterbalance auto-
matic and manual approaches. Deformable model or level-
set-based methods have been successful for many applica-

tions. They require an initial setup and then automatically
searching for true boundary to optimize relevant cost func-
tions. However, the process will have to start over when the
result is not satisfactory. Live wire has been recognized as
an efficient and reliable option for segmenting a wide range
of 2D ROIs. It converts boundary detection into a graphic
search, providing full user control during the segmentation
while minimizing human interaction. This approach is ex-
tended to 3D by either processing several sectional images
from orthogonal planars; or iteratively adjusting boundary
initialized using segmentation results from the previous
sequential sectional images. In this paper, we re-conduct
the 3D segmentation workflow proposed in previous work
based on the second scenario[1]. The approach introduce
new control parameters and cost features to maximally
extract knowledge from previous segmentation and improve
segmentation and continuities of a new processed image. The
method will be discussed in detail in Section II. Section III
will validate the approach and present the results. Section
IV concludes the paper.

II. METHOD

In this section, we will first briefly review the paradigm
of the 2D live-wire approach and its extension to 3D.
Then, we will discribe the new framework in the following
subsections.

II-A. 2D Live wire
The basic idea of the original live wire method is to

convert the boundary definition problem into a graphic
searching. So a cost function is defined to calculate and
define the “cost” for connecting a pixel to its adjacent 8
neighborhood pixels. When a control point or seed, s, is
selected, the optimal paths from all other pixels in the
relevant image area will then be calculated through dynamic
programming. During the interaction, the optimal paths from
a target location, indicated by the user, will show to suggest
a segment candidate. A typical cost function is as follows:

c(p, r) = wZfZ(r) + wGfG(r) + wDfD(p, r) + {...} (1)

where r is a pixel adjacent to p, fZ(r) and fG(r) are
Laplacian zero-crossing and gradient magnitude, and fD(p,r)

is a gradient-direction cost [2], [3]. The costs are normalized
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and reversed if necessary so that pixels along the boundary
have small costs. wx are weights of the corresponding cost
and

∑
(wx) = 1, and can be adjusted by the user. Addi-

tional costs can also be used to improve the segmentation
performance[2], [3], [4]. Thus, total cost between a seed s
and another pixel, defined as the sum of such cost defined
by pixel pairs, (p, r), in between, is used as the path cost.
In applications, the user can drive the segmentation process
using mouse cursor to define the boundary one segment at a
time till a complete segmentation is reached, as demonstrated
in Fig.1. Since the user has the full control during the
process, 2D live wire is able to deal with almost all kinds
of objects though large computation might be necessary for
large ROIs.

Fig. 1. Example of 2D live wire process. The user selects a control
point s, green dot, then a suggested boundary segment will show
to link the mouse cursor and s. When a satisfactory segment is
achieved, it is confirmed by selecting a new seed. The process is
terminated by closing the boundary. The ROI is a tumor located in
the right lung.

II-B. Iterative Live Wire
Several approaches have been developed to extend live

wire to 3D[5], [6], [7], [4], [1]. One option is to reduce
the problem to 2D, instead of a true 3D implementation, to
segment the object all relevant parallel 2D sectional images
and the 2D results form the 3D segmentation. Iterative live
wire (ILW) uses 2D live wire to define a 2D boundary, B,
on a selected slice i, then B is projected to slices i+ 1 and
i−1 as an initial boundary, Binit. Several control points, S =
{sj}, j = 1, · · · , N , will be selected, to separate Binit into
N segments evenly (except for segment N ). The boundary
segments between each pair of sj , sj+1, sN+1 = s1 for
defining segment N , will be redefined following live wire
paradigm resulting a new boundary segment that is close to
the true boundary on current image (except for pixels closed
to sj and sj+1. The boundary will then be adjusted iteratively
with different S chosen correspondingly, i.e. choose the
middle pixel on segment between sj and sj+1 as new seed
for next iteration. When the accumulated cost, CB , along the
boundary does not change or vary slightly from one iteration
to the following, △CB < cmin, the process ends and the
result,Bi+1, will be stored and passed to its following slice,
Bi+1 to i+2 or Bi−1 to i−2. The process will be performed
automatically until stopping conditions are activated. Fig.2
shows an example of ILW segmentation.

Fig. 2. Iterative live wire process. a. Original image, ROI is as
that in Fig.1. b. Bi is projected onto Ii+1 as Binit. Binit is close
to the true boundary, but not the same. c. Seeds were selected
along Binit and the boundary is redefined using 2D live wire. d.
Iteratively, the boundary candidate is approaching toward the real
one and the process stops when minor change of boundary cost is
observed between two subsequent iterations.

II-C. Improved Iterative Live Wire
In addition to project B from slice i to i+ 1, to provide

a good Binit, assuming object boundary does not change
dramatically between two subsequent slices (which is true
in standard CT images), we can use more information from
the previously segmented object area to improve the segmen-
tation result. In this paper, the cost function is formulated as
below:

ς(p, r) = B(r)(wZfZ◦T (r) + wGfG◦T (r)
+wDfD◦T (p, r) + wPfP(r))

(2)

Let Ii be the processed image area on slice i, i ∈
[imin, imax]. imin and imax are slice limits that encompass
the ROI and can be set manually or automatically[1]. B
is a characteristic function to apply the geometric data of
boundary Bi defined on slice i to slice i+1. It can be used
either to narrow the search range or as a global weight to
local cost. B reduce computation and improve distinguishing
local difference. An example can be:

B(r) =
{

1, ∥r −Binit∥ < R
∞, otherwise (3)

which is used to mask an local region whose distance to
Binit is within limit R which is defined manually or auto-
matically based on spatial resolutions of the CT image. B can
also be defined using distance transform. fZ◦T (r), fG◦T (r),
and fD◦T (r) are the gradient and gradient direction features
calculated based on a transformed image I ′i+1, where T is
an image transform function that uses anatomical or image
features presented by segmented area included by Bi on Ii.
T is used to enhance Ii+1, to I ′i+1, to improve boundary
searching. A typical T can be a maximum likelihood (ML)
transform. Let Oi be the object area bounded by Bi, and
the mean and standard deviation of its pixel intensities are
µOi and σOi . Since the object changes slightly over slices
subsequently, µOi and σOi are ML estimates of the statistic
properties of pixel intensities of Oi+1, encompassed by true
Bi+1. Let I(r) be the intensity of a pixel r in the processed
image, then

I ′i+1(r) = T (I(r)) =

(
1 + exp

(
−I(r)− µ

κσOi

))−1

(4)
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Factor κ controls the coverage of the mapping window.
The transform process enhance the edge information of
the target region using a priori ROI characteristic derived
from segmentation of previous slice. fP(r) is the probability
prediction of whether pixel r is located on Bi+1. Let Pi =
{pk}, k = 1, · · · ,K, be pixels located on Bi. Ak be the
neighborhood of pixel pk. Let µBi,A,k and σBi,A,k be the
intensity mean and standard deviation of pixels in Ak, which
can be cubic, sphere, square, or circle with a radius of RA.
Thus,

µBi,A =
1

K

∑
1≤k≤K

µA,k, σBi,A =
1√
K

∑
1≤k≤K

σA,k (5)

are estimates of the overall sample statistic properties of Bi.
Thus, fP(r), for instance, can be defined as

fP(r) = 1− (α
∣∣∣µIi+1,A,r−µBi,A

σBi,A

∣∣∣+ β
∣∣∣ σIi+1,A,r−σBi,A

σBi,A
+σIi+1,A,max

∣∣∣
+γ

∣∣∣σBi+1,A,r−σBi+1,A,p

σIi+1,A,max

∣∣∣)
(6)

where σIi+1,A,max is the maximal neighborhood standard
deviation, calculated as Eq.5, of pixels on image Ii. α, β,
and γ are preset parameters. The probability prediction cost
can also use statistic features of both interior and exterior
regions. fP(r) reduce cost for pixels located along the
boundary.

In order to iteratively adjust the boundary to approach to
the true boundary, the number N of control points S = {sj}
should be selected corresponding to the size of the Bi and
boundary condition, and to seek the optimal boundary. Small
N results in lack of control between two subsequent sj and
sj+1, so that the boundary segment between such a pair
of seeds might be incorrect, especially when the boundary
condition is weak. Large N , on the other hand, limits the
searching area, so that it is not able to adjust the boundary
candidate iteratively toward the real one while increasing
computation. N can be set manually or automatically. Let

ζit(N,Bi+1) =
∑

1≤j≤N

ζ(sj , sj+1) (7)

be the accumulated cost of Bi+1 at iteration it, where the
segment cost is the accumulated cost of each pair of pixels
along that segment, ζ(sj , sj+1) =

∑
1≤kj≤Kj

ς(pkj , pkj+1).

N candidates can be determined in advance based on size
of Binit (KBinit ), intensity mean and standard deviation of
interior and exterior areas, µint, µext, σint, and σext, such
as N = 2n, where

n =
KBinit

NT • λ1

∣∣∣µint−µext

µint+µext

∣∣∣ • λ2

∣∣∣σint−σext

σint+σext

∣∣∣ (8)

λ1 and λ2 are preset parameters and NT is a predefined
threshold (a integer). Thus, N is small when boundary is

strong and large otherwise. Then, an optimal value is chosen
by

N̂ = arg min
N,N±ϵ

ζ̄∆(N,B) (9)

where ϵ is a preset perturbation and ζ̄∆(N,B) is the average
boundary cost of from slice i to i+∆ if N , N − ϵ, or N + ϵ
is used. This is to check the impact of such candidate for a
range of the continuous slices so that an ideal one can be
determined to detect optimal boundary.

III. RESULTS

To evaluate the performance of the proposed approach,
we applied it to segment 20 lymph nodes from two high-
resolution chest CTs [1], whose voxel spacing are {∆x =
∆y = 0.64,∆z = 0.5} mm and {∆x = ∆y = 0.72,∆z =
0.5} mm. Both images were acquired without using contrast
agent and reconstructed using a soft kernel. The selected
lymph nodes vary in geometric and anatomical features, and
are located in prevascular, retrotracheal, lower paratracheal,
subaortic (AP window), and para-aortic lymph node stations
[8], [9]. Segmentation of those ROIs from an expert is used
as ground truth data. The 20 lymph nodes vary in size,
shape, and intensity distribution, thus are typical ROIs in
lung interventions. Among the 20 lymph nodes, the proposed
method was able to segment 18 (9 from each). Accuracy rate
calculated as the overlap of a segmentation and the ground
truth[2], [5], [4]. Fig. 3 shows several lower paratracheal
lymph nodes and corresponding segmentation results using
the proposed method. It is quite normal that a lymph node is
surrounded by other lymph nodes or anatomical soft-tissue
structures.

Table I gives a summary of the segmentation results
derived from the segmentation approach. Overall, the ap-
proach provides robust and accurate the 3D segmentation
performance. We also applied the method to segment 5 liver
tumors that are more challenging than lymph nodes above.
Table II gives a summary of the segmentation accuracy by
comparing the results with corresponding ground truth data,
which are manual segmentation from an expert. Fig.4 shows
example segmentation results regarding a tumor candidate
adjacent to the azygos vein, a tumor in the middle of liver
and close to the chest wall, and a tumor area after ablation
treatment.

IV. CONCLUSION

ROI segmentation is important to disease detection, diag-
nosis, treatment, and follow-ups, such as lung and liver can-
cer. The task is quite challenging because of the limitation
of CT image in presenting such soft-tissue structures, and
geometric and anatomical difficulties relevant to the ROIs.
This paper presents a semi-automatic approach that improves
the performance of our previous 3D extension of live wire
in ROI segmentation from CT images. We evaluated this
method by applying it on both lymph nodes and difficult
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liver ROIs. The results show the robustness and efficacy of
the proposed approach.
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Lymph Node Scan 1 (%) Scan 2 (%)
1 91 89
2 90 88
3 80 83
4 83 90
5 93 91
6 88 86
7 81 75
µ 87 86

Table I. Accuracy of lymph-node segmentation using the
proposed method.

Fig. 3. Example lymph nodes that were segmented by the pro-
posed method. The first row shows lymph nodes, pointed by red
arrows, in original images. The second shows corresponding sample
segmentation results.

ROI 1 2 3 4 5 Average
Accuracy 93 90 88 91 94 91.2

Table II. Accuracy of liver ROI segmentation using the
proposed method.
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