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Abstract— In the diagnosis of various brain disorders by 

analyzing the brain magnetic resonance images (MRI), the 

segmentation of corpus callosum (CC) is a crucial step. In this 

paper, we propose a fully automated technique for CC 

segmentation in the T1-weighted midsagittal brain MRIs. An 

adaptive mean shift clustering technique is first used to cluster 

homogenous regions in the image. In order to distinguish the CC 

from other brain tissues, area analysis, template matching, in 

conjunction with the shape and location analysis are proposed 

to identify the CC area. The boundary of detected CC area is 

then used as the initial contour in the Geometric Active Contour 

(GAC) model, and evolved to get the final segmentation result. 

Experimental results demonstrate that the proposed technique 

overcomes the problem of manual initialization in existing GAC 

technique, and provides a reliable segmentation performance. 

I. INTRODUCTION 

The corpus callosum (CC) is the largest white-matter 
structure in human brain. It connects the left and right cerebral 
hemispheres, and works for interhemispheric communication. 
Several neuroimaging studies have revealed that the structural 
changes of CC occur in a variety of neurological diseases, 
such as epilepsy [1] and autism [2]. If the CC area can be 
segmented correctly, anatomical and structural features, such 
as size and shape, can be used to determine the condition of 
neurological diseases. 

The in-vivo Magnetic Resonance Imaging (MRI) is 
regarded as the best approach for obtaining the structural 
information of CC, such as cross-sectional area and shape [3]. 
Typically, in the T1-weighted midsagittal brain MRI, CC has 
the appearance of broad arched band. An example of the 
T1-weighted midsagittal brain MRI slice is illustrated in Fig. 
1(a). Note that the yellow contour indicates the CC structure. 
It is observed that the CC structure is horizontal oriented, and 
located near the centre of the brain. One close-up example of 
CC is shown in Fig. 1(b), where the CC area is highlighted by 
yellow contour. CC area presents high intensity, and appears 
as a narrow and long shape. The location and shape of CC are 
important features to distinguish CC from other brain tissues.   

Segmentation of CC from brain MRIs is a challenging and 
critical task in medical image analysis. Several works have 
been conducted on the segmentation of CC in brain MRIs. 
Ginneken et al. [4] proposed a technique for CC extraction in 
brain MRIs using the learned CC shape model. El-Baz et al. 
[5] proposed an improved segmentation technique using the 
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learned CC shape model and the visual appearance model. 
However, the performances of both techniques are sensitive to 
training images. Jacob et al. [6] proposed an Active Contour 
Model (ACM) based technique for CC segmentation, and the 
contour evolves by minimizing the energy functionals related 
to the current contour. Sandhu et al. [7] proposed a Geometric 
Active Contour (GAC) based segmentation technique, where 
the region information is incorporated. Although these ACM 
based techniques have been reported to provide good 
performance, there are still some limitations: (i) an initial 
contour is required from user inputs; (ii) ACM may fail if the 
initial contour is far from the boundary of interested object.  

 
(a)                                            (b) 

Figure 1. (a) An example of T1-weighted midsagittal brain MRI slice, the CC 
area is highlighted by yellow contour. (b) A close up example of the CC. 

To address the limitations of ACM based segmentation 
technique, we propose a hybrid technique for automated CC 
segmentation, which outperforms the existing techniques. In 
the proposed technique, using the adaptive mean shift 
clustering technique, the image is first clustered into various 
homogeneous areas, representing various brain tissues. The 
CC area is then detected based on area analysis, template 
matching, in conjunction with shape and location analysis. 
The boundary of obtained CC area is extracted and evolved 
under the mechanism of GAC model, for final segmentation of 
CC structure. The major contribution of the proposed 
technique is to provide an accurate initialization of the CC 
region, which results in better performance in terms of the 
segmentation accuracy.  

The rest of the paper is organized as follows: Section 2 
introduces details of the proposed technique. Section 3 shows 
the experimental results tested on real brain MRI data, 
followed by the conclusion in Section 4. 

II. THE PROPOSED TECHNIQUE 

The schematic of the proposed technique is shown in Fig. 
2. It is observed that the technique contains three modules: 
Adaptive Mean Shift Clustering, Automated Initialization of 
CC Contour, Geometric Active Contour based Segmentation. 
Details of each module are presented in the following. 
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Figure 2. Schematic of the proposed technique 

A. Adaptive Mean Shift Clustering 

In most MRIs, CC area is an area with homogeneous 
intensity. In this work, we use an adaptive mean shift (AMS) 
technique [8] to cluster homogenous areas. The AMS is a 
useful tool for finding modes (stationary points of the density 
of image intensity) of an image. The steps for image clustering 
using adaptive mean shift technique [8] are as follows: 

1) Consider an image with N pixels, and consider the gray 
scale intensity g as a 1-D feature vector for N pixels. For each 
pixel i in the image, let its feature vector be denoted by Vi. 
Calculate the Euclidean distance between Vi and its neighbors, 
and sort these neighbors of Vi by order of increasing distance 
to Vi. Let Vi,k denote the k

th
-nearest neighbor of Vi. We set k=50 

experimentally, as k increases, the number of clusters 
decreases. The adaptive bandwidth hi is calculated as follows, 
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2) For each feature vector Vi, a symmetric window Sh with 
bandwidth hi is generated. Let the number of points included 
in Sh be Ji (including Vi). 

3) For each feature vector Vi within the window Sh, 
calculate the weighted mean shift vector Mh(Vi) using the 
equation as follows, 
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where Vj is the j
th
 feature vector within window Sh, and d is the 

dimension of feature space, in our case, d=1. K(x) is the kernel 
function and is calculated as follows,  
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where c  is a normalization constant that makes the integral of  

K(x) equals to one. 

4) Shift the center of window Vi by Mh(Vi), and repeat till 
the norm of Mh(Vi) is less than 1, and store the convergence 
points as modes, which are centers of different homogeneous 
regions in the image. 

An illustrative example is shown in Fig. 3. A T1-weighted 
brain MRI is shown in Fig. 3(a), and the resulting cluster map 
generated by the AMS is shown in Fig. 3(b). Note that the 
vicinity pixels that have similar intensity values are clustered. 

 
(a)                                             (b) 

Figure 3. (a) An input midsagittal T1-weighted brain MRI. (b) Resulting 

cluster map generated by AMS 

B. Automated Initialization of CC Contour 

In the subsequent processing, the Geometric Active 

Contour (GAC) Model [7] is adopted to segment the CC, and 

a specific initialization of contour is required before applying 

the GAC technique. In order to find the initial area of CC 

automatically, we propose a hybrid initialization technique 

which is presented below. 

1) Area Analysis: In order to automatically identify a CC 

cluster from all clusters generated by the AMS technique, the 

area analysis criterion is applied. Based on the prior 

knowledge, the CC is within a predefined threshold range 

[Tal, Tah]. We set Tal=N 1.5% and Tah=N 9%  

experimentally, where N is the total number of pixels in the 

brain MRI. The fractions 1.5%  and 9%  are determined 

based on the domain prior and experimental results. By 

applying the area criterion to the pre-clustered regions, we 

obtain a binary image with a few candidate regions. Denote 

this binary image as IB.  

2) Template Matching: As shown in Fig. 3 (a), besides 

the true CC, there exist a few unrelated regions. Therefore, in 

this step, the template matching (TM) technique is applied to 

detect the true CC area. This step has several sub steps and 

discussed as follows. 
At first, we generate a set of template images. The 

template images are generated based on a CC structure from a 
healthy person provided by a radiologist. Based on the 
knowledge of CC, we could build template images for 
matching with various sizes, shear and orientations by 
changing the scales, rotation angles, and shear transform 
parameter. In this work, the horizontal scale factor Sx and 
vertical scale factor Sy are changed in the range of [0.8, 1] with 
a step of 0.1. The clockwise rotation angle   includes -15°, 

0°, 15°, 30°, and the shear transform parameter [Shx, Shy] are 
both within [0, 0.15] with a step of 0.05. The scale [Sx, Sy], 
rotation angle   and shear transform parameter [Shx, Shy] are 

incorporated using the following equations, 

,
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x S x y S y  ,                          (4) 

cos sin , cos sin
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,
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x x sh y y sh x y      .               (6) 

In total, the template image dataset contains 48 

templates. Examples of CC templates are shown in Fig. 4. 
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Figure 4. An example of CC templates, Sx within [0.8, 1], Sy within [0.8, 1], 

 = -15°, 0°, 15°, 30°, shear parameter within [0, 0.15] 

Given the dataset of CC templates, each template is 

translated to every possible location in the binary image IB. 

The similarity between a template t and a sub-image f is 

measured by calculating the value of normalized cross 

correlation (NCC) [9], which is defined as, 
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where f(x,y), (u,v) and 
,u v

f  are the pixel, centre and mean of 

the sub-image respectively, whereas t(x-u,y-v) and t  are the 

pixel and mean of the template respectively. The value of 
NCC is between 0 and 1, and higher value indicates higher 
similarity. To identify a true CC area, we use a similarity 
criterion. The sub-image f satisfying the following condition 

( , )
NCC

NCC f t T ,                            (8) 

will be considered as a true CC area. In this work, the 
predefined threshold TNCC is set to 0.7 empirically.  

3) Shape and Location Analysis: Based on observation, CC 

structure is generally longer than its width, and located near 

the center of the image. The shape feature can be represented 

by the ratio of the major axis length (l1) and minor axis length 

(l2) of the best fit ellipse [10]. In order to extract the location 

feature, first, we calculate the distance ld between the image 

centre and the centre of detected CC area, and then we 

calculate the ratio of ld to the image height (lh). This ratio is 

considered as the location feature of CC.  

  
 (a)                                               (b) 

Figure 5. (a)(b) Two examples of template matching result, the red rectangles 

indicate the detected regions. 

Extract the largest connected area A (with largest number 
of pixels) in the detected region obtained by template 

matching. We use the shape and location criteria based on the 
prior domain knowledge to determine whether it is CC.  
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Threshold 
S

T  is set to 2 and 
L

T  is set to 0.25 empirically 

to make sure that the CC structure is longer than the width, 

and located near the image center. Finally, the boundary of 

detected CC area is extracted as the initial contour of CC.   

C. Geometric Active Contour (GAC) Based Segmentation 

After the initialization of CC contour, the GAC model 

[7] is ready to capture the final segmentation of CC area.  

Given an initial contour C of the CC area, representing 

the zero-level set of a signed distance function : 2
   , 

such that 0   inside the CC area, and  0   outside the 

CC area. The image gray scale intensities are modeled as the 

random variable z Z . Therefore, the probability density 

functions (PDFs) ( , )
in

p z    and ( , )
out

p z   of pixels inside 

and outside the contour C can be evaluated, respectively.  

In the GAC model [7], the similarity between pixels 

inside and outside the contour C is measured by the standard 

deviation between the log-likelihood of ( , )
in

p z   

and ( , )
out

p z  . Therefore, the contour C is evolved iteratively 

to maximize the following image-based energy functional, 
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where  ( )f z  denotes the expected value of the functional 

( )f z . The evolution of contour C (or equivalent  ) is 

performed according to the equation, 
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      The stopping criterion of evolution is that the maximum 

number of iterations is achieved. 

III. EXPERIMENTAL RESULTS 

In this section, we present the performance of the proposed 
technique on 12 real brain MRI data. The ground truths of CC 
areas are manually drawn by a professional radiologist, and 
the segmentation results are compared with the ground truth 
data. To evaluate the segmentation performance, three 
evaluation metrics are computed as follows [11], 
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where TP  is the number of pixels in true positive area (region 

which is correctly classified as CC), TN is the number of 

pixels in true negative area (region which is correctly 

classified as background), FP is the number of pixels in false 

positive area (region which is incorrectly classified as CC), 

FN is the number of pixels in false negative area (region 

which is incorrectly classified as background).  
In the experiment, we compare the segmentation 

performance between the MAC technique [12], the GAC 
technique [7], and the proposed technique. The MAC 
technique [12] is an active contour model based on image 
gradient information. The initial contours of CC in the MAC 
technique and the proposed technique are generated by the 
automated initialization technique described in section II. 
While for the GAC technique, a biggest possible rectangular is 
placed in the CC area for initialization, to approximate the 
automatically generated initial contour.  

Fig. 6 presents examples of detection results based on the 
Magnetostatic Active Contour (MAC) technique [12] and the 
proposed technique. It is noticeable that the proposed 
technique has better performance in segmentation of CC. In 
addition, the comparison of statistical performance evaluation 
is shown in Table 1. It is observed that, the proposed technique 
outperforms the MAC technique [12] in all the indices. 
Because the proposed technique is based on the GAC 
framework, it achieves a similar segmentation performance 
with GAC technique [7]. 

   

   

   
Figure 6. Two examples of detection results. The first row shows two 

T1-weighted midsagittal brain MRIs. The ground truths of CC structure are 
indicated by yellow contours. The second row and the third row (from top to 

bottom) illustrate the detection results based on the MAC technique [12] and 

the proposed technique, respectively. The detected CC structures are 

highlighted by yellow contours. 

TABLE I.  PERFORMANCE COMPARISON OF CC SEGMENTATION 

Techniques Accuracy Sensitivity Specificity 

MAC [12] 85.67% 87.42% 89.70% 

GAC[7] 91.35% 84.08% 93.30% 

Proposed 92.04% 86.88% 94.16% 

IV. CONCLUSION 

This paper presents a simple and novel technique for the 

automated segmentation of CC in T1-weighted midsagittal 

brain MRIs. First, the initial brain MRI is clustered into 

various homogeneous areas using the adaptive mean shift 

technique. Second, the area analysis, template matching and 

the shape and location analysis are adopted to localize the CC 

area from generated clusters, and the boundary of obtained 

CC area is extracted as the initial contour of the subsequent 

deformation model. Finally, the segmentation of CC is 

generated using the Geometric Active Contour (GAC) model. 
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