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Abstract ² Matching occluded and noisy shapes is a 

frequently encountered problem in vision and medical image 

analysis and more generally in computer vision. To keep track 

of changes inside breast, it is important for a computer aided 

diagnosis system (CAD) to establish correspondences between 

regions of interest. Shape transformations, computed both with 

integral invariants and geodesic distance yield signatures that 

are invariant to isometric deformations, such as bending and 

articulations. Integral invariants are used on 2D planar shapes 

to describe the shape boundary.  However, they provide no 

information about where a particular feature on the boundary 

lies with regard to overall shape structure. On the other hand, 

eccentricity transforms can be used to match shapes by 

signatures of geodesic distance histograms based on 

information from inside the shape; but they ignore the 

boundary information.  We describe a method that combines 

both the boundary signature of shape obtained from integral 

invariants and structural information from the eccentricity 

transform to yield improved results.   

1. INTRODUCTION 

Mathematically, a shape is considered to be a closed contour 

that describes a single entity. Shape matching is a well-

known problem in the field of medical image analysis and 

computer vision. It is usually performed by producing a 

shape signature, which ideally is invariant to rigid or 

isometric transformations, such as, articulations, bending, 

translation, and rotation. Here, we combine two such 

techniques, the continuous eccentricity transform [1-4, 12] 

and integral invariant signatures [5-6]. A detailed review of 

shape representation [7], matching and description 

techniques and categorical classification is given in [8]. 

The continuous eccentricity transform is used to find 

descriptors of shape based on geodesic distance maps.  Such 

descriptors then yield histograms in the form of shape 

signatures. The signatures obtained by the eccentricity 

transform are considered to be invariant under rigid motion 

and isometric transformation of shape. 

Compared to curvature measures [9], eccentricity 

transforms (Ecc) are robust to noise [1]. Ecc finds the 

geodesic distance for each point within a shape, to every 

other point on the boundary. 
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 It then assigns to each point a distance to the point 

farthest away from it. Instead of assigning the maximum 

distance, the mean distance may also be used. The geodesic 

distances for this purpose are calculated using the fast 

marching algorithm (FMA). The Ecc shape matching 

algorithm, matches histograms obtained from Ecc 

transformed images. Such a geodesic distance histogram 

does not explicitly contain boundary information, including 

information such as curvature, and it does not appear to 

have been used for establishing point-wise shape 

correspondences between shapes.  

Conversely, integral invariants are shape descriptors that 

are preferred to curvature for their robustness to noise, and 

have been used effectively for shape matching [5] 

applications and for dividing shapes into further regions [6] 

to quantify occlusion and new growth.  However, a 

fundamental problem with integral invariants is that they 

relate only to the boundary and do not take into account the 

information from inside the shape. As a result, two similar 

geometric features on a shape boundary, at very different 

geometrical locations will produce same shape signature. 

This may result in false matches in point-wise shape 

correspondence. We combine the two ideas, tuning integral 

invariant boundary signatures based on the eccentric 

information about locations within a shape. Figure 1 shows 

a shape with two pointed peaks, which have similar features, 

though in different locations.  In the eccentricity 

transformed version of shape; it is immediately apparent that 

the two peaks now contain different values in the false 

colour model, and shown in Figure 2 using shape signatures.  

 

  

 
Figure 1: A shape (left), with its eccentricity transform 

(middle) and Ecc histogram shape signature (right) 

 

In a typical shape correspondence application, this will 

help in establishing correct correspondences. Figure 3 shows 

two shapes, S1 and S2, with a pair of corresponding points, 
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where a1 corresponds to a2 and b1 corresponds to b2. Both 

shapes are processed and corresponded as shown.  

 

 
Figure 2: Normalized II signature (blue) of the original shape 

in Figure 1. The II invariant signature of the Ecc version (II-on-Ecc 

- red). The portions a and b, show how two similar features may be 

tuned based on their locality using proposed method.  

 

 

  
Figure 3: Two Ecc transformed shapes (left) and its correct 

correspondence (right) using II and fast marching algorithm. II 

without Ecc will incorrectly match points b1 to a2 and a1 to b2.  
 

2. ECCENTRICITY TRANSFORM 

Andrian [1] defines the eccentricity transform by 

considering a shape 5 ? 96 with a smooth boundary�ò5, 

where 5 may be an image Bæ of J ÛI pixels, such that,  
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The geodesic distance�@æ:Tá U;, between any two points T 

and U on the shape S is given by,  
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Where, L:Tá U; is the set of paths Û:P; from T toU, such that  
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Inside the shape 5 and for any starting point T4, the distance 

function 7:T; � @:T4á T; can be computed by finding 

solution of the Eikonal equation,  
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The fast marching algorithm is used to solve the above 

Eikonal equation to find the minimum path between 

T4�=J@�Tä  

The eccentricity transform (Ecc) of 5 to each point L Ð 5 is 

the shortest geodesic distance to the point on 5á farthest 

away from it.  In the feature set of the shape, where the 

distance for each point inside the shape is calculated to 

every point in the boundary, thus forming �l H �k H � 

feature space, where �l H �k are the image dimensions and 

� is the parameterization of the boundary curve ¼�ä 
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The original paper [1, 12] on Ecc shape matching calculates 

a histogram to calculate the shape signature, without giving 

boundary correspondences.  We have used integral 

invariants to perform shape matching and establish 

boundary correspondence.  

 

3. INTEGRAL INVARIANTS 

Hong defines (circular area) integral invariants in [5] by 

considering a disc $å:L; of radius N applied to every point 

L Ð 5 of a closed contour ò5á that is the boundary of the 

shape 5. The characteristic function is then given by,  
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Where ò56 �is the interior of the curve ò5ä The local 

integral area +å:ò5; of the boundary curve ò5 is given by 

the function +å:L; at every point L�with integral kernel ï as 

follows:  
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Where 3 is the domain of the curve ò5.    

 

4. INTEGRAL INVARIANTS ON ECCENTRICITY TRANSFORM 

SHAPES 

Once an Ecc image is acquired, a multi-scale approach is 

used for integral invariant (II) shape correspondence. N is 

varied to span a range of apertures.  As a result,  integral 

invariant analysis creates a scale space where for every two 

points T Ð 5s and U Ð 5t, the sum of squared difference of 

integral invariants is computed, and this forms a feature 

vector 8Ì. The largest singular value of  8Ì is considered to 

be the maximum distance between T and Uä In this way a 

similarity/distance matrix &:55á 56; is obtained, which 

contains the integral invariant difference for each point 

between two shapes. For shape correspondence, the fast 

marching algorithm is applied to the similarity/distance 

matrix to find a distance map &á:55á 56;, and then the 

shortest geodesic path ):55á 56; from &:rár; to &:JáJ; is 
calculated using gradient descent algorithm, where J is the 

parameterization of both boundary curves ò55 and ò56ä� An 

example of a similarity matrix is shown in Figure 7, with the 
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geodesic map superimposed.  Figure 4 shows the shape 

FRUUHVSRQGHQFH� UHVXOWV� RI� WZR�PDQ� �µGXGH¶�� VKDSHV� DQG� LWV�

geodesic map path is overlaid on the distance map.  

 

  
Figure 4: Left: point-wise correspondence of two human shapes, 

one with an occluded limb. Right: Distance map &á:55á 56; 
computed by FMA, where Geodesic path ):55á 56; is calculated 

using gradient descent, shown as a blue line passing across the 

diagonal. The twist in the curve shows regularized correspondence 

of occluded limb.  

 

The matching cost between two shapes is given by,  
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5. RESULTS 

The algorithm has been applied to 36 shapes from Kimia 

database - 4 shapes each from 9 shape categories. As the 

method is general in nature, a broader evaluation may be 

carried out to evaluate precision of this method for a specific 

application. Though this algorithm is aimed to 

corresponding region of interest in temporal mammogram, 

we have used Kimia database as it is considered a standard 

to assess shape matching algorithms. All pairs of shapes are 

compared and a matching cost is calculated for II, Ecc and 

II-on-Ecc matching. II-on-Ecc gives the strongest intra 

group matching. Figure 5 & Figure 9 summarize the result 

of matching.  

Dark blocks along the diagonal reflect low cost of 

matching within a specific shape group, which means higher 

similarity.  

The method is aimed to find changes in the region of 

interest, over time or in different views of the same 

mammogram. Figure 6 shows a pair of Craniocaudal (CC) 

and Mediolateral oblique (MLO) breast density maps 

created by Volpara [10]. Both mammograms were 

automatically segmented using a hierarchical segmentation 

method (topographic approach) based on iso-contours. As a 

result, a number of regions were segmented and were 

matched using the method described above. Two regions, 

suspected of abnormalities are shown in Figure 6. It may be  

noticed that II-on-Ecc performs better than II alone; the 

difference is clearly seen in Figure 7, where the geodesic 

path for II-on-Ecc shows a more regularised matching and 

consequently yield a lower matching cost for a closer match. 

Few more examples of this method applied to mammograms 

are given in Figure 8.  

   

II Ecc II-on-Ecc 
Figure 5: Shape matching results of methods mentioned above. 

Dark pixels reflect a low matching cost and higher shape 

similarity, which is greater for II-on-Ecc. Refer to Figure 9 for 

shape retrieval details. 

 

 

  
Figure 6: Segmented [11] pair of CC and MLO views of  breast 

density maps, obtained by Volpara [10], and matched and 

corresponded using our proposed method.   

 

  
II II-on-Ecc 

Figure 7: Geodesic path drawn over similarity matrix, which 

shows point-wise correspondence between regions in Figure 6. It 

can be seen that more regularized correspondence is achieved by 

using II-on-Ecc, as compared to II alone. No results for Ecc given 

here, as it cannot establish point-wise correspondence of shapes. 

 

6. DISCUSSION 

In this paper, we have combined structural and boundary 

information in a shape matching application, applied to 

regional correspondence in temporal mammograms.  

Integral invariants and eccentricity transform are invariant 

to isometric deformations, such as bending and articulations. 

However, the integral invariants is a contour based local 

descriptor, which relates to the boundary of the shape and 

do not take into account inside the shape. On the other hand, 

Ecc is a global region based descriptor that maps the 

structural anatomy of a shape, however, does not explicitly 

contain the boundary information, including curvature. We 

describe a method that combines both techniques by tuning 
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the integral invariant boundary signature based on the 

eccentric information about regions within the shape.  

Experimental results here reflect upon the correct 

matching, which is a qualitative improvement compared to 

integral invariant results; however, the main aim of this 

method is to reduce the correspondence error while 

matching two shapes.  Shape matching algorithms usually 

stuck in local minima while establishing point-wise 

correspondences. This method first stretches regional 

differences within each shape, thus elaborate dissimilarities 

before comparing them, which reduces the probability of 

false correspondence. This feature is the fundamental 

strength of our approach. 

We have applied our method to shapes from various 

groups of Kimia database and have compared the results to 

those obtained by integral invariants and eccentricity 

transforms when applied separately. There is an overall 

improvement in results for both inter and intra group shape 

matching. The fast marching algorithm was applied to 

establish a point-wise correspondence between shapes and 

to calculate a matching cost. The results are encouraging 

and indicate scope for further improvement.  
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Figure 8: A few more examples of segmented, temporal 

mammograms, where regions are matched and corresponded 

against each other using the proposed method.  

 

 
II-on-Ecc shape retrival 

Figure 9: This chart shows the shape retrieval aspect of II-on-Ecc 

in Figure 5. This X and Y axis of the chart consists of shapes, 

which are indexed consecutively from 1-36 in 9 different shape 

groups from Kimia database. Each box represents a shape on x-

axis, and its height (range) on the y axis represent top 4 matches 

among all 36 shapes. The red bar in each box shows the median 

shape value of retrieved matches. Categories of Rabbits, Aliens, 

Tools, Men and Kite have perfect group retrieval results for II-on-

Ecc method.  
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