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Abstract² Scatter signals in cone-beam computed 

tomography (CBCT) cause a significant problem that degrades 

image quality of reconstructed images, such as inaccuracy of 

CT numbers and cupping artifacts. In this paper, we will 

present an experiment-based scatter correction method by pre-

processing projection images using a statistical model combined 

with experimental kernels. The convolution kernels are 

estimated by using different thickness of PMMA plates 

attached to a beam stop lead sheet such that the scatter signal 

values can be measure in the shadow area of the projection 

images caused by the lead sheet. The scatter signal values of 

different thickness levels can be measured in the shadow area 

of projection images caused by the lead sheet. Then, the 

projection images are convolved with the kernels that are 

derived from the actual measurement of scatter signals in 

PMMA plates. Finally, the primary signals can be estimated 

using the maximum likelihood expectation maximization 

method. Experimental results by using the proposed method 

show that the quality of the reconstruction images is 

significantly improved. The CT numbers become more 

accurate and the cupping artifact is reduced.   

 

I. INTRODUCTION 

Cone-beam computed tomography (CBCT) imaging 

systems with flat panel detectors have attracted more interest 

in dental and maxillofacial imaging in the recent years due 

to their accurate 3D information and minimal radiation dose. 

Commonly, scatter signal values in small area detectors are 

smaller than those of large area detectors. Thus, medical CT 

scanners have small values of scatter to primary ratio (SPR), 

unlike CBCT scanners where SPR values are more than 1 

[1]. It is well known that image quality in cross-sectional 

images is degraded by X-ray scatter signals, yielding 

incorrect CT numbers and cupping artifacts. However, the 

quantity of X-ray scatter signals depends on various factors, 

such as the field of view (FOV), the object size, and X-ray 

beam energy. 

Although many scatter correction methods have been 

published, there exist two main scatter correction methods 
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[2]-[6]. The first method is the physical removal of scatter 

signals before detection which is mostly used in medical CT 

scanners, such as anti-scatter grids, air gaps and slit devices 

[2]. The second method is numerical compensation, such as 

FRQYROXWLRQ-VXEWUDFWLRQ� WHFKQLTXHV� >�@�� >�@� DQG�
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convolution-subtraction technique may produce the negative 

primary values which are not theoretically correct [7].    

In this paper, we propose the experiment-based scatter 

correction method. We apply the maximum likelihood 

expectation maximization (MLEM) [8], [9] method and 

experimental kernels to obtain primary signal values. In 

addition, the experimental results will be benchmarked with 

fan beam computed tomography (FBCT) in similar CT 

system settings. The remainder of this paper is organized as 

follows. First, we will describe scatter modeling and the 

overall concept of the proposed scatter correction steps. The 

next section will explain how to construct the kernels from 

measurement data. Then, we describe the thickness mapping 

method with projection images. The experimental results 

before and after scatter correction are compared with FBCT. 

The final section will be the conclusion and future work.  

 

II. SCATTER MODELING AND OVERALL CONCEPT 

 Our CBCT system consists of the flat panel detector 

(Varian PaxScan 2520D) with the pixel size of 0.254 mm, 

and the X-ray source with 90 kVp. A full rotation of scan 

with an increment of 1 degree is achieved to acquire 360 

projection images. Those images will be corrected before 

reconstruction. Normally, the measured signal (Im) in the 

projection images contains both primary and scatter signals, 

so Im can be written as: 
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where Ip is the primary signal which is what we desire, Is is 

the scatter signal which can be measured, x and y denote 

pixel coordinates in a projection image. The scatter signal 

can be written in the form of the primary signal convolved 

with the kernel function, K, as follows: 
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where   denotes a 2-D convolution operator. To estimate 

the primary signal, we use the iterative MLEM algorithm as 

follows:  

([SHULPHQW-%DVHG�6FDWWHU�&RUUHFWLRQ�IRU�&RQH-%HDP�&RPSXWHG�

7RPRJUDSK\�8VLQJ�WKH�6WDWLVWLFDO�0HWKRG� 

Sorapong Aootaphao, Saowapak S.Thongvigitmanee, Jatuwat Rajruangrabin, Parinya Junhunee,
 
and 

Pairash Thajchayapong 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5087



  

� �
� � � �

� � � � � �yxKyxIyxI

yxIyxI
yxI

q

p

q

p

m

q

pq

p
,,,

,,
,1

�

u
 �                (3) 

where q

pI  is the primary signal estimated at the q
th

 iteration. 

The scatter correction process starts by creating a database 

of kernels according to thickness of PMMA plates [10], and 

initializing the primary signal ),(0
yxI p

. The next step is to 

match each pixel of the primary signal with estimated 

PMMA equivalent thicknesses, i.e., the data are divided into 

different groups according to thickness. The sub-data sets of 

the primary signal are convolved with the kernels and 

summed up. And then, the summed result is used to perform 

deconvolution by the MLEM algorithm. Finally, we check 

the condition for convergence. If it does not converge, we 

will return to the thickness mapping process again. In 

summary, all steps of the scatter correction can be illustrated 

as follows in Fig. 1.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The overall scatter correction process 

III. KERNEL MEASUREMENTS 

 The calculation of kernels is one of the key factors for 

successful deconvolution. The spreading distances and 

amplitudes of the scatter signal depend on thickness of the 

object, which can be described as follows: 
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where
 

)(tA  is the amplitude term which is derived from 

the scatter fraction (SF) at each thickness, � �yxht ,  is the 

exponential term that forms the shape of the kernel, t is 

thickness values. Thus, the kernel measurements consist of 

two parts to consider: the ht term and the amplitude term. In 

the first part, we measure the kernel shape from the scatter 

signal in the projection images. For the experimental setup 

of kernel shape measurement, we used the total of 14 sets, as 

one set of the PMMA plates is 9 mm. Thus, the total length 

of the PMMA plates in the experiment is 126 mm. The lead 

sheet is placed on top of the PMMA plates, while the edge 

region of the PMMA with the lead sheet aligns with the 

beam center of X-ray. Hence, the scatter signal can be 

measured through a profile in a projection image at the 

shadow of a lead sheet with different PMMA thickness as 

shown in Fig. 2 a). In our experiments, to achieve the 

thickness map at 1 mm, the projection data sets of PMMA 

plates at each thickness are interpolated. Thus, the ht term is 

calculated at each thickness of 1 mm as shown in Fig. 2 b). 

In the second part, the amplitude term to form the kernel is 

the SF function. This SF function can be derived by 

measuring the amplitude of the scatter signal near the edge 

of the lead sheet for different PMMA thickness. The plot of 

the SF function versus the thickness is shown in Fig. 3. 

 
a) 

 
b) 

Figure 2.  a) Profiles of scatter signal values at each thickness, b) The 

normalized kernel calculated from LSF. 

 

Figure 3.  The scatter fraction versus thickness 
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IV. THICKNESS MAP MEASUREMENTS 

To construct the thickness map, first, we create the log 

signal function at each thickness of pure PMMA plates [3], 

[4], [10]. One set of PMMA plates has the thickness of 9 

mm and the total of 14 sets is used in this work. To compute 

the PMMA equivalent thickness, t, we derive the %HHU¶V law 

[11] as follows: 
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where 
PMMAP  is the linear attenuation coefficient of PMMA 

materials, Im,0, is the measured signal of a blank scan and Im 

is the measured signal of an object. Fig. 4 shows the derived 

log signal plot in terms of thickness. Since the ideal plot 

between the log signal term and thickness is linear, we 

employ linear curve fitting to the real data. 

 
Figure 4.  The log signal versus thickness 

V. EXPERIMENTAL RESULTS 

 To illustrate the performance of the proposed technique, 

we tested with 2 objects: the PMMA plate with the lead 

sheet and our own design phantom. In our experiment, we 

divided the projection data of an object into 15 groups, 

where each size of a group is 8 mm. Fig. 5 shows a few 

examples of sub-data sets after grouping their thickness          

through different intensities of projections. Fig. 6 shows the 

profiles of the scatter corrected results in the first object, 

where the blue dashed line is the scatter corrected signal, and 

the red solid line is the original measured signal. In the 

second object, our own design phantom consists of various 

materials: Teflon, Delrin, PMMA, Nylon, Water and Air. 

Fig. 7 shows the profiles of the estimated primary signal and 

the measured signal in the phantom image. As expected, the 

Ip values (blue dashed line) are smaller than the Im values 

(red solid line). Although the estimated primary signal 

values after scatter correction contained high frequency 

noise, we ignored noise suppression in this study. Once the 

data sets of projection images were corrected, we 

reconstructed cross-sectional images by filtered 

backprojection (FBP) reconstruction [10].  For this study, we 

used the Hamming filter with the cutoff of 0.85 to obtain 

good quality of reconstructed images. Fig. 8 a) and b) show 

the comparison of the reconstructed images before and after 

scatter correction, respectively. Fig. 8 c) compares the 

results through the profiles. It is noticed that the cupping 

artifact of the scatter corrected profiles is reduced and the 

contrasts in the inserts are increased. For quantitative 

analysis, the results of scatter correction in CT number 

values are benchmarked with FBCT as shown in Table I. 

After scatter correction, the CT numbers of all materials in 

CBCT are approaching those in the FBCT system. Table II 

shows the comparison of noise (standard deviation) with and 

without scatter correction. This confirms that noise is 

increased after scatter correction, which agrees with the 

FBCT system.    

 

 
a) 

      
                                        b)                                       c) 

     
                                         d)                                       e) 

Figure 5.  a) Measured projection image, b)-e) sub-data sets after matching 

the thickness map at 0, 50,80, 100 mm 

 

Figure 6.  Comparison of intensity profiles in the projection image of the 

PMMA with the lead sheet before and after scatter correction

 

Figure 7.  Comparison of intensity profiles in the phantom image before 

and after scatter correction 
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a) 

 

 
b) 

 
c) 

Figure 8.  Comparison of the scatter corrected results a) without scatter 

correction, b) with scatter correction, c) profile results  

 

TABLE I.  COMPARISON OF CT NUMBER VALUES AND ABSOLUTE ERRORS 

IN PERCENTAGE 

 
FBCT 

 

CBCT  

No Correction 

 

CBCT 

Scatter Correction 

HU HU % Error HU % Error 

Teflon 917 860 6.2 924 0.76 

Delrin 334 308 7.78 339 1.49 

PMMA 121 118 2.47 125 3.3 

Nylon 97.3 90 7.5 101 1.64 

 

TABLE II.  COMPARISON OF NOISE VALUES (STANDARD DEVIATION) 

 FBCT 

 

CBCT without 

scatter correction 

 

CBCT with  

scatter correction 

Teflon 94 56.7 90 

Delrin 88 48 78 

PMMA 74 37 69 

Nylon 78 41 73 

 

VI. CONCLUSION 

     The scatter correction method in cone-beam computed 

tomography is proposed in this paper. Our proposed methods 

start with the measurement kernels derived from the 

experimental results and find the PMMA equivalent 

thickness map in the projection images. Then, the primary 

signal projection images are estimated by the MLEM 

method. The quality of reconstructed images after scatter 

correction is improved in terms of higher CT number 

accuracy and smaller cupping artifacts in comparison with 

the results obtained from FBCT. The pitfall of scatter 

correction is an increase in high frequency noise in the 

reconstruction images as the number of iterations is 

increased. For future work, we will work on reducing such 

high frequency noise in the projection images. 
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