
  

 

Abstract— A study relating signal patterns of burst onsets in 

burst suppression EEG to the anesthetic agent or anesthesia 

induction protocol is presented. A dataset of 82 recordings of 

sevoflurane, isoflurane and desflurane anesthesia underlies the 

study. 3 second segments from the onset of altogether 3214 

bursts are described using AR model parameters, spectral 

entropy and sample entropy as features. The features are 

clustered using the K-means algorithm. The results indicate 

that no clear cut distinction can be made between the burst 

patterns induced by the mentioned anesthetics although bursts 

of certain properties are more common in certain patient 

groups. Several directions for further investigations are 

proposed based on visual inspection of the recordings.   

 

I. INTRODUCTION 

Burst suppression (BS) pattern in the EEG signal is 
defined as alternating periods of suppressed EEG and high 
amplitude mixed frequency bursts. Commonly amplitudes 
below 5 microvolts for at least a 2 second period is 
considered as a definition for EEG suppression.  Burst 
suppression appears in the case of severe brain injury or 
hypoxia, but also in deep anesthesia with all commonly used 
anesthetic agents. In the latter case the condition is totally 
reversible. Most commercially available depth-of-anesthesia 
monitors detect burst suppression pattern assessing the depth 
of anesthesia at this state as the ratio of time of suppressed 
EEG to that of bursts in a sliding window. The variable is 
called burst suppression ratio. 

Various properties as well as the mechanism behind the 
BS pattern have been studied by several authors. Lipping et. 
al. have shown that the dynamics of the BS is different in 
enflurane and isoflurane anesthesia with relatively more 
frequent bursting and shorter bursts in the case of enflurane 
[1]. Huotari et. al. have found that bursts can be invoked 
during suppression by electrical stimulus and that the invoked 
bursts have typical waveform properties not seen in 
spontaneous bursts [2]. Steriade et. al. have studied the role 
and mechanisms of the cortico-thalamic neural loops in the 
genesis of BS as well as EEG spindles accompanying BS in 
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the case of certain drugs [3, 4]. In gradually deepening 
anesthesia the BS pattern is usually preceded by high 
amplitude slow waves and it has been suggested that these 
waves are a manifestation of up and down switching of the 
electrical state of the cortex. EEG suppression follows when 
the cortex ‘gets stuck’ to the upper state. This hypothesis is 
confirmed by the finding that bursts actually occur on a DC-
level shift not usually observed due to the high-pass 
prefiltering of the EEG signals in common clinical practice 
[5].  

Although usually appearing as a clear on-off 
phenomenon, it is occasionally difficult to determine where 
exactly a burst starts or ends. Also, the waveform of bursts 
varies significantly depending on the anesthetic agent but 
also from recording to recording in the case of the same drug 
and even within a single recording. The dataset underlying 
the present study - 82 recordings of the whole anesthesia 
procedure with three different drugs and different induction 
protocols - gave us a good opportunity to study the burst 
waveforms. Visual analysis of the recordings indicated that 
several typical burst patterns could be observed. However, no 
clear correlation between the burst patterns and the 
administered drug or induction protocol could be visually 
observed. The aim of this study is to use unsupervised 
classification methods to classify the burst patterns according 
to their spectral properties and waveform complexity. We 
also study if correlation between the burst properties and the 
administered drug or type of induction can be shown.         

II. MATERIAL 

The data set underlying this study contains 82 recordings 
of the whole anesthesia procedure including induction, period 
of deep anesthesia with BS EEG and withdrawal of the drug 
until the patient was fully awake. The study was approved by 
the Ethics Committee of the Silesian University of Medicine, 
Katowice, Poland (approval no. NN-6501-196/06). 
Anesthesia was maintained using three different inhalation 
anesthetics: sevoflurane, isoflurane (ISO) and desflurane 
(DES). In the case of sevoflurane three different induction 
methods were applied; in the first group propofol was used 
for induction (SEVO), in the second group volatile induction 
was performed with the single breath technique (Vital 
Capacity Rapid Inhalation Induction; SEVO-VCRII) while in 
the third group conventional spontaneous inhalation 
induction was used (SEVO-VIMA).  

The EEG signal was recorded using S/5 Compact 
Anesthesia Care Monitor (GE Healthcare) with S5/Collect 
software (Datex-Ohmeda Division of Instrumentarium 
Corporation). Raw EEG data includes 4 channel EEG (100 
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Hz sampling frequency) plus an additional channel measured 
from the forehead using the Entropy

TM
 sensor (400 Hz 

sampling frequency). In this study only the entropy sensor 
channel was used.  

The recordings were visually analyzed and the burst 
onsets were marked. In several occasions the exact burst 
onset time was difficult to detect; patterns similar to the 
beginning of a burst were seen during continuous EEG 
together with segments of somewhat suppressed EEG. In the 
annotation of burst onsets the goal was to find representative 
signal patterns, therefore the cases where burst onsets were 
difficult to determine were discarded. Also, the bursts had to 
last for at least 3 seconds after the onset for reliable analysis, 
therefore in some recordings several short bursts had to be 
discarded as well. In 13 of the 82 recordings no BS was 
observed. The remaining recordings were divided between 
the five groups as follows: 

- SEVO: 8 recordings with 445 bursts  

- SEVO-VIMA: 16 recordings with 852 bursts 

- SEVO-VCRII: 13 recordings with 447 bursts 

- ISO: 15 recordings with 801 bursts 

- DES: 17 recordings with 627 bursts. 

III. METHODS 

The EEG signals were first prefiltered using an equiripple 
FIR filter to reject 50 Hz power noise and discard frequencies 
above 99 Hz. Three second segment from the beginning of 
each burst was used in the analysis. According to visual 
analysis the burst patterns differed in their frequency content; 
some bursts started with high frequency (up to 20 Hz) 
activity while the frequency content of other bursts seemed to 
be limited to below 10 Hz. Therefore we chose AR modeling 
as the primary method to extract features for clustering and 
classification. We also checked if signal entropy measures 
such as sample entropy and spectral entropy added any 
discriminative power to classification. The conventional K-
means clustering and classification algorithm was used for 
classification. Although the K-means algorithm does not 
usually find the optimal solution, its performance is simple 
and intuitive; therefore it was considered as a suitable choice 
for this kind of preliminary study. In the following we give a 
short description of the K-means classifier as well as the 
entropy algorithms.  

A.  K-means classifier 

The data are clustered according to the following iterative 
procedure: 

1. determine randomly K class centers in N-dimensional 

feature space 

2. calculate the distance from each data point to each class 

center 

3. allocate each data point to the class of the closest center to 

it 

4. recalculate the class centers as the mean of the data points 

allocated to the particular class 
5. repeat the algorithm until the change in the location of the 

class centers remains under predetermined threshold. 

In the second phase of the algorithm individual data points 
are reassigned and the sum of distances between the data 
points to their respective class centers is calculated. If the 
sum of distances is decreased, the reassignment is preserved. 
In this study the MATLAB kmeans routine was used to 
perform the classification.  

B. Spectral entropy 

 Spectral entropy measure (SpEn) is based on the definition 
of entropy given by Claude Shannon:  

   ∑         . 

In the calculation of spectral entropy the function is applied 
to the normalized power spectrum of the signal,   , where   is 
the frequency value in the power spectrum. The power 
spectrum is normalized so that the sum over all frequency 
values equals to one. The spectral entropy measure is 
calculated as: 

     
 ∑        

  
    

    
, 

where    and    are the lowest and highest frequency values 
used in the calculation and   is the total number of 
frequency bins in the corresponding frequency range. 
Spectral entropy was first applied to EEG signal analysis by 
Inouye et. al. [6] and it is the main component of the 
commercially available Entropy

TM
 index for the assessment 

of anesthetic depth. 

C. Sample entropy 

Sample entropy (SampEn) is a modification of the 
approximate entropy measure introduced by Pincus [7]. From 
the signal   of length  ,         vectors of length 
  are formed:       {                  
  }  After that, for each             the quantity 
  

     is calculated using: 

  
     

                                      

     
, 

where the distance   between the vectors       and       is 
defined as: 

                  
         

                      

and   is the parameter of the algorithm referred usually as the 
filtering level. The summation 

      
 

   
∑   

    

   

   

 

is performed next and the sample entropy measure is 
obtained as 

                 
       

     
. 

  is most commonly set to     times the standard deviation of 
the signal segment to be analyzed. In EEG analysis the 
dimension   is most often set to 2.  

Approximate entropy and sample entropy are often used 
in EEG analysis in research. To our knowledge these 
methods are not applied in commercial equipment though.  
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IV. RESULTS 

As the clustering performance 
is crucial for studying the 
correlation between burst 
properties and the administered 
drugs or induction protocols, we 
first analyzed different sets of 
features and feature space 
dimensionalities. The results are 
presented in Fig. 1. Three kinds 
of feature sets were used: 1) AR-
model parameters with AR-model 
order from 4 to 13; 2) AR-model 
parameters of model orders 3 to 
12 together with sample entropy 
and 3) AR-model parameters of 
model orders 2 to 11 together 
with sample entropy and spectral 
entropy. The feature values were 
normalized to zero mean and unit 
variance before applying the K-means 
classification to give each feature 
potentially equal discriminative power. 
As could be expected, the total sum of 
distances from the data points to 
corresponding cluster centers increases 
with the dimensionality of the feature 
space. It can be seen from the figure 
that the entropy measures do not add to 
the clustering performance of the K-
means algorithm when compared at 
similar dimensionality. Based on the 
analysis the feature space of AR model 
parameters of order 7 was selected for 
further consideration.   

For curiosity we also calculated the 
distribution of the data points on the 
SampEn - SpEn two-dimensional 
feature space. The results are shown in 
Fig. 2.  It can be seen that no clear 
clusters are formed in this feature space. 
As could be expected, there is a positive 
correlation between the two entropy 
measures. Sample entropy seems to 
capture the properties of the bursts 
better that spectral entropy as the 
variance along the horizontal axis is 
higher. 

As the recordings were originally 
allocated to five groups according to the 
anesthetic drug and induction protocol, 
we also used five classes in the K-means 
algorithm. The dimension of the feature 
space was 7 and only the AR model 
parameters were used as features based 
on the conclusions from Fig. 1. Fig. 3 
shows the correlation between the 
classes determined by the K-means 
algorithm and the patient groups. In Fig. 
4 example bursts from the five classes 

Figure 1. Clustering performance using various feature sets and feature space 

dimensionalities. The vertical axis represents the total sum of distances from data points to 

corresponding cluster centers. The horizontal axis represents the dimensionality of the 

feature space.  

Figure 2. Distribution of the bursts on the SampEn - SpEn feature space and 

corresponding K-means classification results. The classes here are not the same as in 

Fig. 3 and Fig. 4. The entropy measures are normalized to zero mean and unit 

variance 

Figure 3. Correlation between the classes determined by the K-means classifier and 

the administered anesthetic drug or induction protocol.  
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are presented. The cases yielding features closest to the 
cluster centers were chosen for Fig. 4.  

Fig. 4 indicates that although the clustering algorithm has 
succeeded to differentiate between different burst waveforms, 
the bursts of classes 3…5 still look quite similar. Visual 
analysis of the data presumes that more distinct classification 
is possible. Fig. 3 indicates that bursts belonging to the 
different classes can be found from each recording group. 
However, class 4 bursts are clearly overrepresented in the 
SEVO-VIMA group and class 5 bursts tend to be more 
common in ISO and DES groups.     

V. DISCUSSION AND CONCLUSIONS 

This study presents preliminary results of the attempt to 

relate burst waveforms to the administered anesthetic drug 

or induction protocol. Although no clear distinction could be 

made, certain classes of bursts dominated in certain patient 

groups. Some of the reasons our analysis could only poorly 

discriminate between the patient groups are: 

1. the feature set does probably not capture the relevant 

properties of the bursts well. In the visual analysis the 

dynamics of signal properties within the first seconds of 

the burst is important. Our features were not able to take 

into account the non-stationarity of the signal 

2. the K-means clustering algorithm does not yield the 

optimal solution; other algorithms like the Self 

Organizing Map should be tried 

3. it is possible that the drugs used in our study yield similar 

burst patterns; the change of the burst properties during 

the recording might be more important than the drug 

used.    

 

Visual analysis of burst patterns 

indicated that there are several other 

aspects of the BS phenomenon 

requiring further attention. As one of 

our previous studies showed, the 

dynamics of bursting, i.e., the lengths 

of bursts and suppression segments, is 

an important property of the 

phenomenon and differs in different 

patient groups [1]. Also, there is a 

hypothesis that burst dynamics 

depends on the age of the patient. 

Visual analysis shows that the pattern 

of the burst onset depends on the 

length of the preceding suppression 

segment - longer suppression segment 

usually causes more distinct burst 

onset. In some cases a typical wave or 

polywave is seen at the beginning of 

bursts. Future studies should also 

incorporate other drugs like propofol 

or etomidate, for example, and relate 

burst patterns to the models of burst 

mechanisms.    

Studying the BS phenomenon - the dynamics of bursting, 

the burst waveforms and their evolution - has the potential 

application in brain monitoring in the operating room and 

intensive care unit.      
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Figure 4. Examples of bursts of classes 1 (uppermost curve) to 5 (lowermost curve) 
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