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Abstract— The performance of surgical robotic devices in
real-time mainly depends on phase-delay in sensors and filtering
process. A phase delay of 16 − 20 ms is unavoidable in these
robotics procedures due to the presence of hardware low pass
filter in sensors and pre-filtering required in later stages of can-
cellation. To overcome this phase delay, we employ multi-step
prediction with band limited multiple Fourier linear combiner
(BMFLC) and Autoregressive (AR) methods. Results show that
the overall accuracy is improved by 60% for tremor estimation
compared to single-step prediction methods in the presence of
phase delay. Experimental results with the proposed methods
for 1-DOF tremor estimation highlight the improvement.

I. INTRODUCTION

In recent past, with the aid of advanced robotic technology,

hand-held robotic instruments were developed for tremor

compensation in microsurgical procedures [1], [2], [3]. With

these hand-held instruments, microsurgeries not only retain

the advantages possessed my human surgeons but also the

tip positioning accuracy. In these robotics assisted hand-held

instruments, accelerometers form the core part for sensing

the motion due to its small size and versatility [1]. Filtered

tremulous motion from the sensed motion is used to generate

the opposing motion to compensate the tremor in real-time,

therefore filtering plays a vital role in the performance of

these instruments.

To estimate the filtered tremor signal in real-time, adaptive

algorithms based on Fourier series (weighted frequency

Fourier linear combiner (WFLC) [3] and band limited mul-

tiple Fourier linear combiner (BMFLC)[4]) and Autoregres-

sive (AR) method [5] were developed. Comparative perfor-

mance of all adaptive tremor estimation methods can be

found in [4]. In real-time tremor compensation due to the

factors such as pre-filtering and cancellation of numerical

integration drift, noise and jerk a delay of 16 − 20ms will

introduce into the procedures. As the tremor lies in the range

of 8 − 12 Hz this delay adversely effects the compensation

efficiency. To overcome this phase delay modifications to

BMFLC and WFLC are proposed in [6], however these

methods are applicable to pre-filtered band-limited signals.

To address this problem multi-step prediction based on

BMFLC and AR methods are proposed in this paper.

Multi-step prediction is popular where time delay is

inevitable or posteriori information is required [7]. Multi-

step prediction has been successfully applied for several
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physiological motion predictions [8], [5]. In this paper, we

analyze the suitability of multi-step prediction for real-time

physiological tremor estimation. Two existing methods BM-

FLC and AR are modified to develop multi-step prediction

methods. A study was conducted with tremor data of five

surgeons and five novice subjects for various prediction

lengths and various sampling frequencies. Several variants

of these methods are reviewed to check the suitability for

real-time tremor compensation. Experimental results for 1-

DOF tremor estimation in the presence of delay show good

improvement compared to earlier methods.

II. METHODS

In this section, we first discuss about signal model em-

ployed followed by the procedure employed for multi-step

prediction. Later the modifications proposed to the existing

BMFLC and AR methods to perform multi-step prediction

are discussed.

A. Signal model

The signal model employed for adaptive estimation is

shown in Fig. 1(a). sk represents the amplitude of the signal

at kth sample. The model xk together with the adaptive

weights wk represents the time-varying model for signal sk,

can be represented in the state-space form as

sk = w
T

k
xk + ek (1)

wk+1 = wk + ηk (2)

where ek and ηk are measurement noise and process noise

respectively.
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(a) (b)

Fig. 1. (a) Signal model (b) Block diagram for multi-step prediction

When no priori information is available, the state dynamics

can be best described by a random walk model (2) [9]. Adap-

tive algorithms like LMS [9] and KF [9] can be employed for

adaptive estimation of state wk. The adaptive schemes for

LMS and KF are provided in Table. I. Employing LMS or

KF, the estimated output yk and prediction error ǫk (shown

in Fig. 1(b)) can be obtained as

yk = ŵ
T

k
xk (3)

ǫk = sk − yk (4)
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In contrary to above, multi-step prediction requires pre-

diction of the signal yh+k several samples ahead (say h
samples), based on its past observations sk, sk−1... as shown

in Fig. 1(b). Model is represented by the reference vector and

the weights (ŵk) represent the estimated adaptive parameters

(states). Depending on the type of model (reference vector)

employed, it may involve time-varying functions or constant

reference inputs. With the reference vector (xk+h) accurately

known at time instant k + h, the estimated parameters

(weights) at the current sample (ŵk) can be employed to

obtain multi-step prediction for output yk+h as

ŷk+h = ŵ
T

k xk+h (5)

TABLE I

ADAPTATION SCHEMES

LMS [9] KF [9]

ŵk+1 = ŵk + 2µxkǫk ŵk+1 = ŵk +Kk(sk − xT

k ŵk)

ǫk = sk − xT

k ŵk Kk =
Pk−1x

T

k

x
T

k
Pk−1xk+R

Pk = (I−KkxT

k )Pk−1 +Q

B. Multi-step prediction with BMFLC (MS-BMFLC)

To estimate the tremor signal in the pre-defined band [ω1−
ωn], a series comprising of sine and cosine components are

combined to form BMFLC [4]:

yk =

n
∑

r=1

ark sin(ωrk) + brk cos(ωrk) (6)

where yk denotes the estimated signal at sampling instant k.
ark, brk represents the adaptive weights corresponding to the

frequency ωr at instant k. ∆ω represents the step size in the

frequency band [ω1 − ωn] division and n = [ω1 − ωn]/∆ω.

The series only considers ’n’ fundamental frequencies in the

band.
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Fig. 2. Multi-step prediction with BMFLC

BMFLC can be represent in the state-space form (1)-(2),

[4]. The model parameters of BMFLC used for the estimation

of tremor are amplitude weights (wk) and the reference

vector (xk). The block diagram representation for multi-step

prediction with BMFLC is shown in Fig. 2. The amplitude

of signal h samples ahead can be predicted as

ŷ(k+h) = x
T

(k+h)ŵk+h (7)

where

• ŵk+h = wk (amplitude weight vector (state vector)

remains constant for k to (k + h) samples)

• x(k+h) =

{

[

sin(ω1(k + h)) · · · sin(ωn(k + h))
]

T

[

cos(ω1(k + h)) · · · cos(ωn(k + h))
]

T

}

C. Multi-step prediction with AR model (MS-AR)

AR model is a type of random process which is popular

for prediction of various types of natural phenomena. It is

also one of the linear prediction methods designed to predict

output of a system based on the previous outputs. AR model

of order M can be represented as AR(M ), described as

sk =
∑M

i=1 wi sk−i

By denoting

wk =
[

−w1 −w2 · · · −wM

]T

xk =
[

sk−1 sk−2 · · · sk−M

]

the AR model can be represented in the state-space form (1)-

(2). Adaptive algorithms both LMS and KF can be employed

as discussed in earlier subsection.
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Fig. 3. Multi-step prediction with AR method

AR model prediction is dependent on the delayed input

vector xk and amplitude weights wk. Multi-step prediction

scheme with AR model is shown in Fig. 3. The amplitude

of the signal predicted at h samples ahead using AR model

can be obtained as

ŷ(k+h) = x̂
T

(k+h)ŵk+h (8)

where

• ŵk+h = wk (the amplitude weight vector remains

constant for k to (k + h) samples)

• x̂(k+l) =
[

ŷk−(l+1) ŷk−(l+2) · · · ŷk−(l+M)

]

;

l = 1, 2, · · · , h. (the input vector x̂k is updated itera-

tively)

III. RESULTS

A. Physiological Tremor Data

Physiological tremor data of 5 healthy subjects and 5
surgeons, 6 trials data per subject is considered for analysis

in this paper. Pointing and tracing tasks are performed

by subjects. Sampling rate of 500 Hz is employed. For

information about data collection, protocol and conditions

see [10].
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B. Latency in tremor compensation

Accelerometers are employed to sense the motion as

shown in the experimental setup in Fig. 7. It contains an

on-board lowpass filter, the hardware filter time constant

calculated from the step-response is approximately 3ms. As

shown in Fig. 7, to separate the tremulous motion from the

sensed motion by acclerometers and to remove the unwanted

integration drift and noise [4], a fifth order Butterworth filter

with pass-band 2−20 Hz is employed. This filtering stage is

the main source for phase delay in real-time. For illustration,

phase delay due to fifth order Butterworth bandpass filter

with pass band 2− 20 Hz is shown in Fig. 4. As dominant

frequency of tremor lies within the range of 8 − 12 Hz, an

average 12 − 16ms phase delay exists in real-time. Thus,

a total of 16 − 20ms phase delay is unavoidable due to

hardware and software filtering as shown in Fig. 7.
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Fig. 4. Delay due to fifth order Butterworth bandpass filter.

C. Simulation Results

In this subsection, we present performance analysis of all

methods thru simulations for the data of 10 subjects. We also

include WFLC-LMS/KF methods [3], [11] for comparison.

To accurately analyze the performance in the presence of

delay, we induce a known delay into the process as shown

in Fig. 5. A zero-phase bandpass filter is employed to remove

the voluntary motion. We then analyze the comparative

performance of all methods for various prediction lengths

and various sampling rates.
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Fig. 5. Performance analysis

1) Parameter selection: For adaptive estimation algo-

rithms, parameter selection and initialization can affect the

estimation accuracy. Parameter selection for BMFLC and

WFLC based methods is well documented. For more in-

formation, see [3], [11], [4]. For AR model, to identify

the optimal values for AR order and the initial filter co-

efficients, a study was conducted on collected tremor data,

results identify AR(3) as the optimal order and w0 =
{−2.88,−0.94, 2.83} to initialize the filter coefficients. Pa-

rameters and initialization for all methods are tabulated in

Table. II.

TABLE II

METHODS & PARAMETERS

Method Model parameters and initial conditions

WFLC-LMS [3] µ0 = 1.10
−5; µ = 5.10−4; f0 = 7 Hz;

WFLC-KF [11] M = 1; R = 0.01; Q = 0.01× I;
P0 = 0.01 × I;

BMFLC-LMS [4] ω1 = 2π × 7; ωn = 2π × 14;
∆ω = 0.1; µ = 0.01;

BMFLC-KF [4] R = 0.01; Q = 0.01× I;
P0 = 0.01 × I;

AR-LMS µ = 0.5; M = 3;
w0 = [−2.88, 2.83,−0.94];

AR-KF R = 0.001; Q = 0.01 × I;
P0 = 0.001 × I;

2) Performance analysis: We choose various prediction

lengths (4ms (2 samples), 8ms, 16ms& 20ms (10 samples))

for the tremor signal to analyze the performance of all

methods. The statistical results (mean and variance) obtained

for all the methods are shown in Fig. 6. Results for different

prediction lengths (4ms, 8ms, 16ms and 2ms) are shown

together with single-step prediction for comparison. For all

prediction lengths, KF based methods outperform its LMS

counterparts. For single-step prediction methods%Accuracy
decreases as prediction length increases. With the proposed

method, a good estimation accuracy can be obtained for

higher prediction lengths as shown in Fig. 6. For e.g.

the estimation accuracy obtained with AR-KF is 8 ± 3%
for 20 ms ahead prediction, whereas with MS-AR-KF the

estimation accuracy increases to 81 ± 2% and with MS-

BMFLC-KF it is 78 ± 1%. MS-AR-KF and MS-BMFLC-

KF performs better than MS-WFLC-KF for higher prediction

lengths. This clearly highlights the robustness and suitability

of the proposed methods for tremor prediction.
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Fig. 6. Multi-step prediction for various prediction lengths: (a) BMFLC
(b) AR (c) WFLC; representation is standard deviation around mean
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Fig. 7. Experimental procedure

D. Experimental Validation

In this section, we present the experimental results for

MS-AR-KF and MS-AR-LMS methods. Since BMFLC was

evaluated experimentally earlier [6] and as the performance

was similar to AR based methods, we only evaluate AR

methods experimentally in this section. The procedure em-

ployed for experimental validation is shown in Fig. 7. The

nanopositioning stage is driven in one axis to replicate the

tremor motion from the subject as shown in Fig. 7. Phase

delay of 4ms is induced into the process to include the

accelerometer low-pass filter delay. Butterworth filter with

pass band 2-20 Hz introduces a delay of about 14-16 ms.

In contrast to earlier section, a time varying delay of 16-

20 ms is now present in the process. To counter this delay,

a 20 ms ahead prediction is performed with MS-AR-LMS

and MS-AR-KF. To obtain the ground truth for performance

validation, we employ zero-phase bandpass filter in offline,

since a zero-phase linear filter implementation is impractical

in real-time.

Experiments are conducted with data of three subjects

(S#1 (tracing task), S#2 (tracing task), S#4 (pointing task))

with two trials per subject. Parameters and initial conditions

for real-time experiments are similar to simulation experi-

ments. For illustration, results obtained with tremor data of

subject #1 (tracing task) are shown in Fig. 8. The zero-phase

bandpass filtered tremor signal is shown in Fig. 8(a). The

% accuracies obtained with MS-AR-LMS and MS-AR-KF

methods for three subjects and two trials are 53 ± 4% and

64±2% respectively. Experimental results show that MS-AR-

KF improves prediction accuracy by over 60% compared to

single-step prediction.

IV. CONCLUSIONS

In this paper to overcome the affect of phase delay in

real-time tremor compensation, multi-step prediction with

BMFLC and AR based methods is proposed. The proposed

methods are validated thru simulation and experimental

studies. Results show that both AR-KF and BMFLC-KF

show similar performance and are more suitable for real-

time tremor estimation. Future work will focus on real-time

estimation of phase delay to further improve the multi-step

prediction estimation.
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