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Abstract— This paper describes a state-space representation
of the parallel-cascade model of ankle joint stiffness whose
parameters are directly related to the underlying dynamics of
the system. It then proposes a two step subspace method to
identify this model. In the first step, the intrinsic stiffness is
estimated using proper orthogonal projections. In the second
step, the reflexive pathway is estimated by iterating between
estimating its nonlinear and linear components. The identified
models can be easily converted to continuous-time for phys-
iological interpretation. Monte-Carlo studies using simulated
data which replicate closely the experimental conditions, were
used to compare the performance of the new method with
the previous parallel-cascade, and subspace methods. The new
method is more robust to noise and is guaranteed to converge.

I. INTRODUCTION

Joint stiffness defines the dynamic relation between the
position of the joint and the torque acting about it [1]. It plays
an important role in the control of posture and movement [2].
Consequently, its identification is important to the study of
posture and movement [3], [4], [1]. Joint stiffness consists
of two components: (a) an intrinsic component that is due to
the mechanical properties of the limb, joint and muscle; (b)
a reflex component which originates from the stretch reflex
arc [4].

Fig. 1 shows a small signal, parallel-cascade model for
joint stiffness. In this model, the intrinsic component has
a linear representation and the reflex component has a
differentiator followed by a delay and a Hammerstein system
(i.e. the cascade of a static nonlinear and dynamic linear
blocks). Total joint torque is the summation of the intrinsic
and reflex torques.

The parallel-cascade method proposed in [1] separates and
identifies the intrinsic and reflex components using a non-
parametric approach by iterating between the intrinsic and
reflex pathways estimations. Our laboratory has extensively
used the parallel-cascade method to study stiffness in both
control and stroke patients [4], [5]. A real time version of the
method was also implemented and used to show that subjects
could voluntarily modulate their stiffness [6]. Despite its
utility, the parallel-cascade method has some shortcomings.
First, the iteration which is central to the method may not
always converge; especially when the reflex contribution is
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Fig. 1. Parallel-cascade model of ankle joint stiffness [1].

small or the signal to noise ratio SNR is low. Second, its
methods are correlation-based and will fail for measurements
made in closed loop - as will be the case when the joint
interacts with a compliant load [7], [3].

To address these issues, our laboratory developed a state-
space model of stiffness and used a subspace method to
estimate it [8] . This method required no iteration, gave unbi-
ased results when used with closed-loop data, and produced
models that had excellent predictive abilities. However, these
models had many parameters, each of which depended on
the properties of both the static nonlinear and the linear
components in the reflex pathway. This made it difficult to
convert the state-space model to the continuous-time model
needed to interpret the physiological significance of the
results

To address these problems, this paper reformulated the
state-space model used in [8] to have parameters there were
fewer in number and were directly related to the static
nonlinear or linear components of the Hammerstein structure.
Consequently, the new identification method estimates all
elements of the parallel-cascade model individually so that
converting it to a continuous-time model is straightforward.
The identification method is also new. The intrinsic pathway
is now estimated directly using orthogonal projections. The
reflex path elements are then estimated using a Hammerstein
identification algorithm [9] with guaranteed convergence.

II. THEORY

A. Formulation

Fig. 1 shows the parallel-cascade model of joint stiffness.
The intrinsic stiffness relates the intrinsic torque (TQI(k))
to the joint position by means of inertial (I), viscous (B)
and elastic (K) terms: TQI

POS = Is2 +Bs+K.
The reflex pathway differentiates and delays the input

position which is then fed to a Hammerstein structure, i.e.,
cascade of a static nonlinearity followed by a linear system.
Approximate the static nonlinearity by a basis expansion:

w(k) = α1g1 (dvel(k)) + · · ·+ αngn (dvel(k)) (1)
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where w(k) is the output of the nonlinearity, dvel(k) is the
delayed velocity (the input to the nonlinearity), gi(·) is the
ith basis function and αi is its coefficient.

Let the following state-space model represent the linear
component between w(k) and the reflex torque TQR(k):{

xR(k + 1) = ARxR(k) +BRw(k)

TQR(k) = CRxR(k) +DRw(k)
(2)

where xR(k) is the state vector at time k ∈ {0, · · · , N −1},
and AR, BR, CR and DR are the state-space matrices. Let
the elements of BR and DR be:

BR =
[
b1 · · · bm

]T
DR = [d] (3)

Now, the total state-space formulation is [8]:{
x(k + 1) = AxR(k) +BU(k)

T̃Q(k) = CxR(k) +DU(k) + v(k)
(4)

where T̃Q(k) is the measured torque contaminated with the
noise sequence (v(k)) and U(k) is a constructed input vector:

UR(k) =
[
g1 (dvel(k)) · · · gn (dvel(k))

]T
UI(k) =

[
pos(k) vel(k) acc(k)

]T
(5)

U(k) =
[
UTR UTI

]
The algorithm described in [8] estimates the state-space

matrices A, B, C, D of (4) which provides output predic-
tion. Establishing the mapping from these matrices to the
original system requires further analysis of the structure of
these matrices.

The A and C matrices are simply the AR and CR matrices
of the linear block of the reflex stiffness. However, the
matrices B and D have the following structure:

B =

 b1α1 · · · b1αn 0 0 0
...

...
...

...
...

bmα1 · · · bmαn 0 0 0


D =

[
dα1 · · · dαn K B I

]
(6)

Thus, the estimates of the elements of B and D do not
directly specify the structure of the nonlinearity or the
linear system. This is because these are combinations of
the parameters of the nonlinearity (αi), the linear elements
of the reflex stiffness ({b1, · · · , bm, d}) and intrinsic stiff-
ness parameters ({I,B,K}). Consequently, the objective is
to develop an identification algorithm that estimates these
parameters directly.

B. Identification Algorithm

We will use the multivariable output error state space
MOESP algorithm with past input PI as instrumental variable
to estimate the system matrices Â and Ĉ. This method
provides unbiased estimates of these matrices for an additive,
arbitrarily colored noise [10].

To identify the remaining system parameters, express the
output torque as a least-squares problem [10]:

Y = Ψθ + V (7)

where Ψ is constructed from known elements:

Ψ =

 0 UT (0)
...

...∑N−2
τ=0 U

T
R (τ)⊗ ĈÂN−2−τ UT (N − 1)


and ⊗ is the Kronecker product and Y , V and θ are:

Y =
[
T̃Q(0) · · · T̃Q(N − 1)

]T
V =

[
v(0) · · · v(N − 1)

]T
θ =[ b1α1 · · · bmα1 · · · b1αn · · · bmαn

· · · dα1 · · · dαn K B I ]T

Rewrite the data equation (7) by separating the intrinsic and
reflex contributions:

Y = ΨRθR + ΨIθI + V (8)

where ΨI and ΨR are:

ΨR =

 0 UTR (0)
...

...∑N−2
τ=0 U

T
R (τ)⊗ ĈÂN−2−τ UTR (N − 1)

 (9)

ΨI =

 UTI (0)
...

UTI (N − 1)

 , θI =

 K
B
I


θR =

[
b1α1 · · · bmαn dα1 · · · dαn

]T
As the first step, estimate θI independently of θR by using
an orthogonal projection on the column space of ΨI and ΨR

to remove the effects of noise and contributions of θR. Using
(8), solve for θI and θR as follows:

θ̂I = Ψ†I (Y −ΨRθR) (10)

θ̂R = Ψ†R (Y −ΨIθI) (11)

where † is the pseudo-inverse operator. θ̂R and θ̂I will be
unbiased estimates of θR and θI given that v(k) is zero-
mean. Substitute θR in (10) with its estimate (11):(

I −Ψ†IΨRΨ†RΨI

)
︸ ︷︷ ︸

H

θI = Ψ†I

(
I −ΨRΨ†R

)
Y (12)

Estimate θI as follows [11]:

θ̂I = H†Ψ†I

(
I −ΨRΨ†R

)
Y (13)

Once θI is estimated, we can remove its contribution to the
measured torque to give YR, an estimate of the reflex torque:

YR = Y −ΨI θ̂I = ΨRθR (14)

Once an estimate of the reflex torque is available, use the
subspace Hammerstein method described in [9] to estimate
the matrices BR = {b1, · · · , bm}, DR = {d} and the
coefficients of the static nonlinearity α = {α1, · · · , αn} [9].
The whole method is summarized below:

5072



Algorithm: The algorithm identifies intrinsic and reflex
components of the parallel-cascade model of ankle joint
stiffness.
1. Record N samples of position input and noisy torque.
2. Construct the input signal U using (5).
3. Use PI-MOESP to estimate the order of the reflex
system and the state-space matrices AR and CR.
4. Construct regressors ΨI and ΨR using (9).
5. Estimate elastic, viscous and inertial parameters of
the intrinsic path using (13).
6. Estimate YR using (14).
7. Estimate parameters of BR, DR and {α1, · · · , αn}
using the iterative Hammerstein method developed in
[9] whose input is UR constructed in (5) and its output
is YR constructed using (14) in step 6.

III. SIMULATION RESULTS:

A. Methods

To accurately identify a static nonlinearity, it would be
ideal to have an input signal that evenly covers its range.
The pseudo random binary sequence PRBS input which has
been extensively used in identification of joint stiffness is far
from this ideal.

In this work, we use a pseudo random multilevel position
sequence which more effectively covers the velocity input
range of the static nonlinearity in the reflex path. Thus,
the amplitude distribution of the velocity profile was closer
to a uniform distribution. In order to simulate a more
realistic environment, we drove our position-servo hydraulic
actuator with 100 realizations of this multilevel sequence and
recorded its position using a precision potentiometer. These
were the inputs used in the simulations.

We also used a realistic model for the additive noise
derived from measured experimental data. It had three com-
ponents: (a) white Gaussian random noise which mimics
the measurement noise, (b) Gaussian white noise low-pass
filtered at 0.9 Hz to mimic variations in the voluntary torque
developed by the subject and (c) a sinusoid which mimics
the 60 Hz noise. We scaled the noise sequence to give the
appropriate SNR.

We simulated the structure shown in Fig. 1 in MATLAB
Simulink. The model was run for 60s at a sampling frequency
of 1kHz. We decimated data to 100 Hz for analysis.

We used two nominal models obtained from experimental
data. The first had a small reflex contribution, i.e., the cascade
gain was small and the threshold of the nonlinearity was
large. We used this nominal model to verify the convergence
of different methods in identification of the reflex pathway:

I1 = 0.014, B1 = 1.645, K1 = 140.810

G1 = 15.738 p1 = 0.604, ζ1 = 0.412, ω1 = 8.285 (15)

The second nominal model had a larger reflex response,
i.e, the cascade gain was larger and the threshold of the
nonlinearity was smaller. We used this nominal model to
verify the robustness of different methods as a function of
noise level:

I2 = 0.015, B2 = 1.507, K2 = 124.454

G2 = 44.292 p2 = 0.161, ζ2 = 0.576, ω2 = 11.245 (16)
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Fig. 2. Identified parallel-cascade models using the parallel-cascade method
in a Monte-Carlo simulation of 100 trials, top panel: estimation of the
intrinsic stiffness, bottom panel: estimation of the Hammerstein cascade
of the reflex stiffness.

B. Results

The first set of Monte Carlo simulations had 100 realiza-
tions and used the first nominal model. The objective was
to verify convergence of the new subspace and the parallel-
cascade methods. Each trial had new realizations of exper-
imental input and noise sequence. Noise was scaled at the
output to a SNR of 10dB. We could not use the original (non-
iterative) subspace method [8] since it could not identify
individual components of the model. For ease of illustration,
we present linear systems using their frequency response
and show the identified nonlinearities over their input range.
We visually verified the accuracy of the identifications by
inspecting the bias and variation of the estimates where bias
was the difference between the average of the estimates and
the true system, and variation was the difference between the
individual trial estimates and the average of the estimates.

Fig. 2 shows individual identification trials, identification
average and the true system of the parallel-cascade model
using the parallel-cascade method [1]. The top panel shows
the identified bode diagram of the intrinsic stiffness. It shows
that the bias and variation were small. The bottom panels
show the estimates of the nonlinearity and linear dynamics
of the reflex pathway. Both were badly biased and had large
variation. Clearly there were many cases where the method
did not converge to the true reflex system.

Fig. 3 shows the models estimated using the new iterative
subspace method. It can be seen that the bias and variation
of the estimates of both the intrinsic and reflex pathway
were much smaller than the parallel-cascade estimates; the
average of the estimates was very close to the true system
and variation was small. This demonstrates that the subspace
method successfully converged and the results were accurate.

In the second set of Monte-Carlo simulations, we used
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Fig. 3. Identified parallel-cascade models using the new subspace method in
a Monte-Carlo simulation of 100 trials, top panel: estimation of the intrinsic
stiffness, bottom panel: estimation of the Hammerstein cascade of the reflex
stiffness.
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Fig. 4. Intrinsic and reflex mean identification VAF bracketed by 90% range
as a function of SNR for three different methods: new iterative subspace,
old non-iterative subspace and parallel-cascade.

the second nominal model and systematically changed the
SNR level from -5 dB to 10dB. 100 simulations were run
at each SNR with different realizations of noise and input.
The objective was to demonstrate the robustness of different
methods to the noise level in terms of identification variance
accounted for VAF between the predicted output and the
noise-free output. Fig. 4 shows a bar plot at each SNR level
showing the mean identification VAF bracketed by its 90%
range, i.e. a range that contains 90% of data points.

In identification of the intrinsic pathway, the new method
and the non-iterative subspace performed similarly; both
accounted for most of the VAF even at the lowest SNR
level. Moreover, the mean VAF for both subspace methods
was always larger than the parallel-cascade method. In iden-
tification of the reflex path, none of the methods provided a
reliable estimate at the lowest SNR level. As SNR increased,
the new subspace method had larger mean VAFs and smaller
variations compared to others, demonstrating that the new
subspace method was the most robust to the noise.

IV. DISCUSSION

The contribution of this work is twofold. First, we showed
direct estimation of intrinsic mechanics independently of
the reflex pathway. This is attractive since the conventional
parallel-cascade method needs to iterate between identifi-
cation of intrinsic and reflex pathways many times before
convergence. This approach can be further extended for
identification of a system with multiple parallel paths. Thus,
each pathway can be independently estimated from others.

Second, we estimate the Hammerstein cascade of the reflex
pathway with a state-space structure whose parameters are
fewer and directly related to its static nonlinearity and linear
component. This is important since makes is straightforward
to convert to the continuous time model needed for physio-
logical interpretation.

The proposed approach is iterative but is guaranteed to
converge. In general, it is difficult to confirm the convergence
of the iterative methods since they need to be initialized in
close vicinity of the optimal minimum. The method proposed
in this paper is iterative but follows the concept of normalized
alternative convex search (NACS). The convergence criteria
of NACS-based methods have been recently established
for any square integrable nonlinearity [11] which does not
depend on the choice of initial condition. We can see in Fig. 2
and 3 that the parallel-cascade method failed in most of the
trials to converge to the true system presumably because the
SNR was large; whereas the new method always converged.
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