
Approximation-based Common Principal Component for Feature
Extraction in Multi-class Brain-Computer Interfaces

Tuan Hoang, Dat Tran and Xu Huang

Abstract— Common Spatial Pattern (CSP) is a state-of-the-
art method for feature extraction in Brain-Computer Inter-
face (BCI) systems. However it is designed for 2-class BCI
classification problems. Current extensions of this method
to multiple classes based on subspace union and covariance
matrix similarity do not provide a high performance. This
paper presents a new approach to solving multi-class BCI
classification problems by forming a subspace resembled from
original subspaces and the proposed method for this approach
is called Approximation-based Common Principal Component
(ACPC). We perform experiments on Dataset 2a used in
BCI Competition IV to evaluate the proposed method. This
dataset was designed for motor imagery classification with 4
classes. Preliminary experiments show that the proposed ACPC
feature extraction method when combining with Support Vector
Machines outperforms CSP-based feature extraction methods
on the experimental dataset.

I. INTRODUCTION

Common Spatial Pattern (CSP) is one of state-of-the-
art feature extraction methods in Brain Computer Interface
(BCI) systems. It was originally proposed by Koles [5] to
analyze abnormal components in clinic research and then
successfully applied to 2-class BCI systems [2][8]. The
idea of CSP is to map data of two classes onto the same
dimension such that variance of one class is maximized while
variance of the other one is minimized. Although CSP is very
successful in 2-class BCI classification systems, applying
it to multi-class BCI classification systems is still an open
problem [11][4].

A current approach is to convert the multi-class classifica-
tion problem to a set of 2-class classification problems. The
two well-known methods are one versus the rest and com-
bination of pairs of 2-class classification problems. These
two methods have their own weakness. The first method
assumes covariances of the rest classes are highly similar.
However it is hard to observe this assumption in real-world
applications. In the second strategy, it cannot guarantee that
good common principal components of two particular classes
are also good for other pairs of classes. This method can
be viewed as forming common principal components for all
classes by simply grouping common principal components
of pairs of classes. Reduction techniques based on heuristics
are applied to reduce number of dimensions in feature space.
Consequently, these techniques cannot guarantee the above-
mentioned idea of CSP.
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From another different perspective, taking multi-class CSP
methods under light of subspace method view as shown
in an influential work [5][8], a subspace is formed for
each class from the corresponding covariance matrix, then
a union of these subspaces is performed to select a group
of principal components based of some measure. We name
this method Union-based Common Principal Components
(UCPC) in this paper. However, the chosen principal com-
ponents may have very little contribution from some data
classes. To address this limitation, we propose a method
that is called Approximation-based Common Principal Com-
ponent Analysis (ACPC). In our method, after constructing
subspaces derived from covariance matrices, we approximate
a new subspace that resembles these subspaces and has
the same number of dimensions. Principal angle between
these subspaces is used as the metric for the subspace
approximation. The idea of forming an approximate subspace
from these subspaces is based on the work of Krzanowski
[6] when dealing with problem of heterogeneous covariance
matrices. Extended works such as of Fujioka et al. [3]
and Rothman et al. [9] are applied to analyzing data with
heterogeneous covariance matrices. Our proposed work is
different from those, we focus on multi-class problems to
derive the resembled subspace for feature extraction in multi-
class BCI systems.

The remaining of the paper is organized as follows. In Sec-
tion 2, we present theoretical foundation of Approximation-
based Common Principal Component method. In Section 3,
we describe model of using common principal components
for feature extraction in BCI systems. Experimental protocols
as well as methods for classification and validation are
introduced in Section 4. Section 5 presents our results and
related discussions. Finally, we present our conclusion and
future work in Section 6.

II. APPROXIMATION-BASED COMMON PRINCIPAL
COMPONENTS

Given a set of k symmetrical real matrices C1, C2, . . . , Ck

size of n × n. Instead of jointly diagonalizing the set of
matrices as Union-based Common Principal Components, we
diagonalize these k matrices separately resulting in set of
eigenvectors Vi and eigenvalues λi satisfying

Ci = ViλiV
T
i (1)

for all matrix Ci with i ∈ [1, k]. In which, Vi is a n × n
matrix whose rows representing principal components for
the corresponding coordinate. It is easy to see that these
problems are identical to conducting k principal component
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analysis (PCA) seperately on k matrices Ci. According to
theory of principal component analysis, when mapping data
on to new coordinates, first a few of principal components
are enough for representing variance of original data. Let
p be the number of selected principal components forming
new subspaces for all Vi. Let Li sized p × n be the matrix
reprensenting p principal components taken from Vi. We then
try to find a new subspace H which resembles all subspaces
spanned by the set of eigenvectors Li. We follow approach
proposed by Krzanowski [6] using sum of principal angles
between new subspace H and other original subspaces.

Let h be an arbitrary vector in the original n-dimensional
data space. Let θi ∈ [0, π

2 ] be the angle between vector h and
the vector most nearly parallel to it in the space spanned by
Li. We define the ∆ function as follows

∆ =
k∑

i=1

cos2θi (2)

Theorem 1. Let h be an arbitrary vector in the original n-
dimensional data space. Let θi be the angle between vector h
and the vector most nearly parallel to it in the space spanned
by Li. Then we have

cosθi =

√
hTLT

i Lih

∥h∥
(3)

Proof: We can see that by the definition, the angle θi is
the angle between vector h and its project on the subspace
spanned by Li. Let p be the project of h on subspace spanned
by Li. Because Li is the basic of the subspace we can then
rewrite vector p as

p = LT
i x (4)

The projected vector of h on the subspace perpendicular to
subspace spanned by Li is h− LT

i x. Therefore,

Li(h− LT
i x) = 0 (5)

Lih− LiL
T
i x = 0 (6)

x = (LiL
T
i )

−1
Lih (7)

Substitute (7) to (4), we have

p = LT
i (LiL

T
i )

−1
Lih (8)

The orthogonality of Li gives us

p = LT
i Lih (9)

Cosine of angle between two vectors by definition is

cos(θi) =
hTLT

i Lih

∥hT ∥∥LT
i Lih∥

(10)

Rewriting norm of vector in dot product operator, we have

∥LT
i Lih∥ =

√
(LT

i Lih)
T
(LT

i Lih) (11)

=
√

hTLT
i LiLT

i Lih (12)

=
√

hTLT
i Lih (13)

Substitute (13) to (10), we have (3). The theorem is proven.

Theorem 2. Let h be an arbitrary vector in the original n-
dimensional data space. Let θi be the angle between vector h
and the vector most nearly parallel to it in the space spanned
by Li. Then the value of h is given by the eigenvector h1

corresponding to the largest eigenvalue λ1 of the matrix L =∑
LT
i Li will maximize the value of ∆.

Proof: According to Theorem 1, we have

∆ =
k∑

i=1

cos2θi =
∑ hTLT

i Lih

∥h∥2
(14)

=
hT

∑k
i=1(L

T
i Li)h

hTh
(15)

=
hTLh

hTh
(16)

We then convert the original optimal problem of finding
arbitrary vector h that maxh

hTLh
hTh

to the simpler optimal
problem of finding normal vector h that max∥h∥=1h

TLh.
Let V be the matrix used for diagonalizing matrix L as
follows

L = V DV T (17)

in which
D = diag(λ1, λ2, , λn) (18)

and
λ1 ≥ λ2 ≥ · · · ≥ λn (19)

We will prove that sup∥h∥=1h
TL ≤ λ1. Let

y = V Th. Since ∥h∥ = 1, we have ∥y∥ = 1.
Then max∥h∥=1h

TLh = max∥y∥=1y
TDy =

max∥y∥=1

∑n
i=1 λi∥yi∥2 ≤ max∥y∥=1

∑n
i=1 λ1∥yi∥2 = λ1.

The equality happens only when vector h is h1 which is
an eigenvector of unit norm associated with the largest
eigenvalue λ1. The theorem is proven.

Applying the Graham-Smith method, it is seen that the
eigenvector h2 associated to the second largest eigenvalue
of matrix L will be orthogonal to vector h1 and leads
to the second largest value of ∆. Similarly, we form the
remaining n vectors hi which will span the new subspace
H . Moreover, we can see that finding new subspace H is
actually to conduct another Principal Component Analysis
on the matrix L. Therefore we can then select q components
from n components of subspace H which is enough to
represent all data points.

The following is pseudo code of the algorithm in finding
common principal components by using two times of prin-
cipal component analysis.

Algorithm 1: Finding approximate-based common princi-
pal components.

Data: A set of k real symmetrical matrices Ci of size n
Result: Common principal components V and their ac-

companied eigenvalues E
Step 1: For each matrix Ci, do Principal Component

Analysis on Ci = ViλiV
T
i

Step 2: For each Vi, select ki components from n compo-
nents of Vi whose sum of eigenvalues exceeds 90% of total
eigenvalue.
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Step 3: Set k = max ki
Step 4: Set L =

∑n
i (L

T
i Li)

Step 5: Do Principal Component Analysis on L = HλHT

Step 6: Select q components from n components of H
Step 7: Return q selected components of H and their

corresponding eigenvalues.

III. FEATURE EXTRACTION WITH COMMON PRINCIPAL
COMPONENT ANALYSIS IN BCI SYSTEMS

In BCI systems, data is acquired by multi-channel devices.
Let Xi = xp(t) be the ith trial of the dataset. All trials
consist of n channels xp(t) = (xp

1, x
p
2, . . . , x

p
n) where p is

the channel index, t is the time index of the signal, and T
is its length or number of samples. Each trial belongs to
a class L(Xi) of mental action or motor imagery. Assume
that there are k classes in the dataset L(Xi) ∈ [1, k]. Let
Cov(Xi) = XiX

T
i be the covariance matrix of trial Xi and

Ci be the estimate covariance matrix of class ith . We use
empirical method to estimate these covariance matrices.

Ci =
1

|Xq : L(Xq) = i|
∑

Xq :L(Xq)=i

Cov(Xq) (20)

=
∑

Xq :L(Xq)=i

XqX
T
q (21)

From these covariance matrices, we derive common principal
components V of data by applying the above-described
algorithm ACPC. Original data will then be mapped on
new subspace as shown in Equation (22).

XCPC
i = V TXi (22)

Feature vector = (log(var(XCPC
i ))) (23)

Due to orthogonal property of new subspace, data on
common principal components are de-correlated. Moreover,
eigenvalues represent variance degree of corresponding prin-
cipal components. Feature vector of a trial as shown in
Equation (23) is formed by combining variances of all
channels from mapped data. To remove nonlinear property
of variances, logarithm function is then applied. So the
feature vector of a trial Xi is log(var(XCPC

i )) and its
size is q where q is number of selected components and is
independent of length of the trial. This property is useful in
allowing us to flexibly determine length of trials, especially
in real time or online BCI systems.

IV. EXPERIMENTAL METHODS AND VALIDATIONS

Our main purpose is to compare our proposed method
ACPC with two popular methods in applying 2-class Com-
mon Spatial Pattern on multi-class BCI systems. They are
one-versus-the-rest (1vsN CSP ) and pair-wise (pair CSP )
methods. The Dataset 2a from BCI Competition IV [1]
which is a well-known dataset for multi-class BCI systems
is chosen for conducting experiments. The dataset was
acquired by Graz University of Technology, Austria using
Electroencephalography (EEG) technology with 22 channels
at sampling frequency 250Hz. Nine subjects were asked to
perform 4 classes of motor imagery tasks to move cursor

left, right, down or up corresponding with imagination of
movement of the left hand, right hand, both feet and tongue.
There are 576 trials in total in both training and testing sets of
the competition. For each trial, there are 2 seconds to help
participants prepare themselves. After that, there is a cue
appearing and staying on screen in 1.25s. The subjects were
asked to carry out motor imagery tasks until 6th second.

We segmented data into lengths of 2 seconds from the
time point 2.5 second. We moved segment window by half
of second timeframe. All these segments were bandpass
filtered with frequency cut-off at 8Hz and 30Hz before
were extracted features as in Equation (23). Support Vec-
tor Machine (SVM) and its popular kernel function RBF
K(x, x′) = e−γ∥x−x′∥2

, a state of the art method for clas-
sifying in BCI systems [7], was chosen to classify data. We
applied grid search to get the optimal classifiers. The param-
eter γ was searched in range 2k : k = −10,−9, . . . , 19, 20.
The trade-off parameter C was searched over the grid
2k : k = 0, 1, . . . , 12, 13.

To evaluate accuracy of classification on the dataset, we
divided it into training and testing data sets by ratio 8:2. The
test data was normalized based on distribution parameters
extracted from the training data set. We performed a 5-
fold cross validation test on the training data to find the
optimal parameters γ and C. These optimal parameters were
then used to build classifiers for the entire training dataset.
Finally, the classifiers were applied on the testing dataset to
get accuracy results. To reduce randomness due to division
of data into training and testing data, we ran this process
five times. The reported accuracy results were calculated
by taking average of accuracies of five times running this
process.

V. RESULTS AND DISCUSSION

We conducted two experiments. In the first experiment Our
purpose is to compare our proposed method ACPC with
1vsN CSP and pair CSP methods on Dataset 2a of BCI
Competition IV. In the second experiment, we analyzed effect
of chosen number of components on classification accuracy.

A. Comparison with 1vsN CSP and pair CSP methods

In this experiment, we select all components which is
22. For other two methods, as in other work, we select
two components for each class for each CSP problem.
Therefore, for one-versus-the-rest CSP, its feature vector has
size 4×2×n = 8×n while for the pair-wise CSP, its feature
vector has size 6× 4×n = 24×n (6 is the number of CSP
problems in this pair-wise strategy.) Table 1 shows results of
classification.

It can be seen that our ACPC method outperforms
others significantly in eight of nine subjects in classification
accuracy. The only exception is subject 7 where 1vsN CSP
and pair CSP are better than ACPC. Another finding
is that results of 1vsN CSP and pair CSP methods are
highly similar. Figure (1) shows this clearly. The light green
line and the red line are nearly identical. The reason can
be both methods use 2-class CSP as their cores. Therefore,
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TABLE I
COMPARISON OF ACPC WITH 1vsN CSP AND pair CSP METHODS

(IN PERCENTAGE). BOLD NUMBERS ARE THE BEST RESULT OF

SUBJECTS.

Method S1 S2 S3 S4 S5 S6 S7 S8 S9
ACPC 84 73 82 67 65 65 74 80 75

1vsN CSP 73 48 77 50 36 40 75 76 69
pair CSP 71 46 78 46 36 40 77 76 70

differences between them if any is very small in multi-class
BCI systems.

Fig. 1. Comparison of ACPC with 1vsN CSP and pair CSP methods.
ACPC: all components. ACPC 80: 80% total number of components.

B. Effect of number of selected common principal compo-
nents on classification accuracy

We used the same dataset as in the first experiment for
analysis. However instead of selecting all components, we
varied the number of selected components. It can help us to
see effect of number of selected components on classification
accuracy. Basically, the more is number of selected compo-
nents the more information do we have. However, the more
is number of selected components the more time do we need
for training and testing the classifiers. The percentage of sum
of eigenvalues varies from 20% to 100% with step of 20%.
Figure (2) shows classification accuracy of the experiments.

Fig. 2. Effect of number of selected components on classification accuracy.

The result shows that the more number of selected com-
ponents there are, the more accurate the classification is.
Moreover, our proposed method ACPC still outperforms
others with only 80% total number components, which is 17
components, selected in most subjects as shown in Figure
(1).

VI. CONCLUSIONS AND FUTURE WORK

We have proposed Approximation-based Common Princi-
pal Component (ACPC) as a new method for direct feature
extraction in multi-class BCI systems. It directly targets
to the multi-class BCI problem instead of converting it
to multiple 2-class BCI problems. Comparing with current
approach of converting a multi-class BCI problem to multiple
2-class BCI problems by employing two popular strategies
One-versus-The-Rest and pairs of 2-class BCI problems, our
proposed method can provide a theoretical framework. We
have also conducted experiments to compare ACPC with
two state-of-the-art methods for feature extraction which
are One-versus-The-Rest CSP (1vsN CSP ) and pair-wise
CSP (pair CSP ). Experimental results on the Datset 2a
of BCI Competition IV show that our proposed method
outperforms these two others even with 80% number of
components selected. We also found that there is a relatively
small difference between two strategies of converting a multi-
class BCI problem into multiple 2-class BCI problems in
classification accuracy on the same dataset.

Future work includes exploring error bound of ACPC
when resembling original subspaces and conducting more
experiments on other well-known multi-class datasets.
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