
  

  

Abstract— The aim of this study was to analyze the 

magnetoencephalography (MEG) background activity in 

Attention-Deficit/Hyperactivity Disorder (ADHD) using fuzzy 

entropy (FuzzyEn), an entropy measure that quantifies signal 

irregularity. Five minutes of recording were acquired with a 

148-channel whole-head magnetometer in 14 ADHD patients 

and 14 control children. Our results showed that MEG activity 

was more regular in ADHD patients than in controls. 

Additionally, there were statistically significant differences (p < 

0.01, Student’s t-test with Bonferroni’s correction) in the five 

analyzed brain regions: anterior, central, posterior, left lateral, 

and right lateral. Using receiver operating characteristic 

(ROC) curves, the highest values of accuracy (82.14%) and 

area under the ROC curve (0.9005) were achieved in anterior 

area. Our results support the hypothesis that ADHD is 

characterized by a delay of cortical maturation in the 

prefrontal cortex.  

I. INTRODUCTION 

Magnetoencephalography (MEG) is a non-invasive 
technique that uses an array of sensors positioned over the 
scalp. These sensors are extremely sensitive to very small 
changes in the electromagnetic brain activity [1]. MEG, as 
electroencephalography (EEG), allows recording neural 
activity with good temporal resolution. Both EEG and MEG 
signals are generated by synchronous activation of 
pyramidal neurons. However, the use of MEG technology 
has some advantages over EEG. Firstly, magnetic fields are 
less distorted by the resistive properties of the skull and the 
scalp. Secondly, EEG signals are strongly influenced by a 
wide variety of factors, such as distance between sensors, 
electrode location, reference point or conducting substance 
between skin and electrode. On the other hand, ambient 
magnetic fields are several orders of magnitude stronger 
than the weak magnetic signals generated by the brain. 
Superconducting quantum interference devices (SQUIDs), 
interference suppression systems and magnetic shielding are 
then mandatory [1]. As a consequence, MEG is 
characterized by limited availability and high equipment 

cost. 
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Attention-Deficit Hyperactivity Disorder (ADHD) is the 
most common neurobehavioral disorder in children and 
adolescents [2]. Diagnostic guidelines identify the main 
symptoms of ADHD as inattentiveness, impulsivity, and 
hyperactivity. The symptoms persist during adulthood in a 
50-60% of patients [3]. Guidelines also acknowledge that 
there is no objective test or marker for ADHD. Thus, 
diagnosis relies entirely on clinical criteria. In pediatric 
population, ADHD produces educational problems. Other 
problems are risk for alcohol and other substance abuse, 
marital disturbances, antisocial behaviors, car accidents, and 
earlier uncontrolled sexual relationships [4]. In spite of its 
clear medical, social and familial relevance, a 
neurobiological marker for ADHD has not been defined up 
to date. Nevertheless, neuropsychological, neuroimaging and 
neurophysiological studies offer evidence of brain and 
behavioral dysfunctions in ADHD. For instance, Shaw et al. 
[5] defined ADHD as a disorder characterized by a delay of 
cortical maturation, which affects in a higher degree the 
prefrontal cortex. Bush et al. [6] reviewed several functional 
neuroimaging studies and concluded that ADHD patients 
show a consistent pattern of frontal dysfunction in the brain. 
In agreement with these results, Fernández et al. [7] found a 
significant decrease of Lempel-Ziv complexity values in the 

MEG frontal activity of ADHD patients.  

The electromagnetic brain activity (EEG and MEG) in 
ADHD has been researched in the last decades by means of 
signal processing techniques. Spectral analyses revealed that 
brain rhythms in ADHD show an increased activity in theta 
frequency band compared to control subjects, especially in 
frontal areas [8, 9]. However, the transfer characteristic of 
the neurons is essentially deterministic and inherently 
nonlinear. Additionally, several feedback loops are present 
in neural networks [10]. Consequently, nonlinear methods 
might be more suitable than traditionally linear techniques to 
analyze the brain activity. The use of nonlinear measures, as 
Lempel-Ziv complexity and approximate entropy (ApEn), 
revealed that the spontaneous activity is less complex and 
more regular in ADHD patients than in control subjects [7, 

11].  

In this study, we have examined the MEG background 
activity in ADHD using a nonlinear measure called fuzzy 
entropy (FuzzyEn). Entropy is a concept addressing 
randomness and predictability, with greater entropy often 
associated with more randomness and less system order [12]. 
Applied to time series, FuzzyEn quantifies the signal 
irregularity [13]. Our purpose was to test the hypothesis that 
entropy values of the magnetic brain activity would be 
different in both groups, hence indicating an abnormal type 

of neural dynamics associated with ADHD. 
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II. MATERIALS AND METHODS 

A. Subjects 

MEG data were acquired from 28 subjects: 14 patients 
with ADHD and 14 control subjects. The clinical group 

comprised 14 children with ADHD (age = 9.64 ± 1.04 years; 

mean ± standard deviation, SD). Inclusion criteria included a 

full DSM-IV (Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition) diagnosis of ADHD combined 
type with associated impairment in at least two settings and 
a Conners’ Parent Rating Scale (CPRS) hyperactivity rating 
greater than two SD above age- and sex-specific means [14]. 
The DSM-IV diagnosis of ADHD was based on the parent 
version of the Diagnostic Interview for Children and 
Adolescents [15]. ADHD patients were totally drug-naïve: 
they had never used any psychoactive drug or received any 

psychoactive therapy.  

MEGs were also obtained from 14 healthy children (age 

= 10.36 ± 1.48 years, range 8–13) without past or present 

neurological disorders. ADHD patients and control subjects 
did not differ statistically in terms of age and years of 

education (6.82 ± 1.22 years in ADHD patients and 7.28 ± 

1.38 years in controls; mean ± SD), and all were strictly 

right-handed. The Institutional Review Board approved this 
research protocol. Written informed consent and assent to 
participate in the study were obtained from parents and 

children, respectively. 

B. MEG recording 

MEG signals were acquired with a 148-channel whole-
head magnetometer (MAGNES 2500 WH, 4D 
Neuroimaging) located in a magnetically shielded room at 
the MEG Center Dr. Pérez-Modrego (Spain). The subjects 
lay comfortably on a patient bed, in a relaxed state and with 
their eyes closed. They were asked to stay awake and to 
avoid eye and head movements. For each subject, five 
minutes of MEG recording were acquired at a sampling 
frequency of 678.17 Hz. These recordings were down-
sampled by a factor of four, obtaining a sampling rate of 
169.55 Hz. Data were digitally filtered between 0.5 and 40 
Hz. Finally, artifact-free epochs of 5 seconds (848 samples) 

were selected by visual inspection. 

C. Fuzzy entropy (FuzzyEn) 

FuzzyEn is an embedding entropy that quantifies the 
irregularity of a signal [13]. Embedding entropies provide 
information about how a signal fluctuates with time by 
comparing the time series with a delayed version of itself 
[16]. ApEn is an embedding entropy proposed for the 
analysis of short and noisy data sets [17]. For this reason, it 
has been widely used to study the irregularity of several 
kinds of biomedical signals. Nevertheless, ApEn 
overestimates the similarity and is thus biased. To solve this, 
sample entropy (SampEn) algorithm was proposed [18]. 
SampEn is largely independent of the signal length and 
displays relative consistency under circumstances where 
ApEn does not [18]. Moreover, SampEn algorithm is simpler 
than the used to compute ApEn. Nevertheless, the similarity 
definition of vectors is based on Heaviside function in both 
ApEn and SampEn. Due to inherent imperfections of 

Heaviside function, some problems exist in the validity of 
these entropies definitions [19]. To overcome these 
drawbacks, FuzzyEn measure was proposed. Previous results 

showed that it is a more accurate irregularity measure [19]. 

FuzzyEn assigns a non-negative number to a sequence, 
with larger values corresponding to greater apparent process 
randomness or serial irregularity, and smaller values 
corresponding to more instances of recognizable features or 
patterns in the data. To compute FuzzyEn, three input 
parameters must be specified: the width (r) and the gradient 
(n) of the boundary of the exponential function, and a run 
length m [13]. In our study, we have chosen r = 0.2 times the 

SD of the original time series, n = 2, and m = 2 [13, 17].  

Given a time series X = u(1), u(2),...,u(N), the algorithm 

to compute the FuzzyEn is the following [13]: 

1) Form N ! m + 1 vectors Xi
m
 defined by: 

  
X
i

m = u i( ), u i +1( ),…, u(i +m "1){ } " u0 i( ) ,   (1) 

where u0(i) is given by: 
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m
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corresponding scalar components: 
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through a fuzzy function . In our study, the 

exponential function was used: 
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5) Increase the dimension to m + 1, form the vector set 

{Xi
m+1

} and get the function "m+1 : 
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6) Finally, FuzzyEn(m,n,r) is defined as the negative 

natural logarithm of the deviation of "m  from "m+1 : 

FuzzyEn m,n,r( ) = lim
N"#

ln$m
n,r( ) % ln$m+1

n,r( )[ ],  (7) 

which, for finite datasets, is estimated by the statistic: 

FuzzyEn m,n,r,N( ) = ln"m
n,r( ) # ln"m+1

n,r( ) .  (8) 

III. RESULTS 

FuzzyEn measure was applied to the 148 MEG channels 
with parameter values of r = 0.2 times the SD of the original 
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TABLE I.    SENSITIVITY, SPECIFICITY, ACCURACY AND AROC VALUES OBTAINED WITH FUZZYEN  IN EACH BRAIN AREA 

 

 

 
Sensitivity Specificity Acurracy AROC p-value 

Anterior 92.86% 71.43% 82.14% 0.9005 0.0021 

Central 85.71% 71.43% 78.57% 0.8903 0.0030 

Posterior 64.29% 85.71% 75.00% 0.8724 0.0031 

Left lateral 64.29% 71.43% 67.86% 0.8469 0.0031 

Right lateral 100.00% 64.29% 82.14% 0.8571 0.0111 

 
 

 
 

Figure 1. Average FuzzyEn values in ADHD patients and control subjects for all MEG channels. 

 

time series, n = 2, and m = 2. Figure 1 summarizes the 
average FuzzyEn values estimated over all the MEG 
channels for both ADHD and control gruops. This figure 
shows that entropy values were lower in the ADHD group 
than in the control group for all channels, which suggests 
that this disorder is accompanied by a MEG regularity 
increase. In order to simplify the statistical analyses, we 
grouped the 148 channels into five brain areas (anterior, 
central, posterior, left lateral, and right lateral) and FuzzyEn 
values were averaged over these areas. Differences between 
patients and controls were statistically significant in the five 
brain regions (Student’s t-test with Bonferroni’s correction): 
p-value = 0.0021 in anterior brain area, p-value = 0.0030 in 
central region, p-value = 0.0031 in posterior area, p-value = 
0.0031 in left lateral, and finally p-value = 0.0111 in right 

lateral. 

Furthermore, we evaluated the ability of FuzzyEn to 
discriminate ADHD patients from control children using 
receiver operating characteristic (ROC) curves. A ROC 
curve is a graphical representation of the trade-offs between 

sensitivity and specificity. We define sensitivity as the rate 
of ADHD patients who test positive, whereas specificity 
represents the fraction of controls correctly recognized. 
Accuracy quantifies the total number of subjects 
appropriately classified. The area under the ROC curve 
(AROC) is a single number summarizing the performance. 
AROC indicates the probability that a randomly selected 
ADHD patient has a FuzzyEn value lower than a randomly 
chosen control. In order to calculate these values, a leave-
one-out cross-validation procedure was used. In the leave-
one-out method, the data from one subject are excluded from 
the training set one at a time and then classified on the basis 
of the threshold calculated from the data of all other 
subjects. The leave-one-out cross-validation procedure 
provides a nearly unbiased estimate of the true error rate of 
the classification procedure. The highest accuracy was 
obtained at anterior and right lateral brain areas (82.14%), 
whereas the highest AROC value was reached at anterior 
region: 0.9005. Table 1 shows the sensitivity, specificity, 

accuracy, and AROC values.  
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IV. DISCUSSION AND CONCLUSIONS 

In this study, MEG activity in ADHD was analyzed 
using FuzzyEn, an entropy measure that quantifies time 
series irregularity. Our purpose was to check the hypothesis 
that MEG recordings reflect the alterations in patients’ brain. 
FuzzyEn has proven to be effective in discriminating ADHD 
patients from controls in the five analyzed brain areas. Our 
results revealed that ADHD patients are associated with 
lower FuzzyEn values compared to controls, indicating a 
decrease of the MEG irregularity. These findings are in 
agreement with previous research that applied other 
embedding entropies, like ApEn and SampEn, to estimate the 
irregularity of brain recordings from ADHD patients [11, 
20]. Other methods have also been applied to analyze the 
EEG/MEG activity in ADHD. For instance, coherence was 
applied to EEG signals to evaluate the functional 
connectivity of the frontal cortex [9]. Fernández et al. [7] 
concluded that ADHD is characterized by a MEG 
complexity decrease using Lempel-Ziv complexity. In 
summary, all these studies support the hypothesis that 
ADHD is characterized by a delay of cortical maturation in 

the prefrontal cortex. 

ROC curves were used to assess the ability of FuzzyEn to 
classify ADHD patients and control subjects. The highest 
values of accuracy and AROC were reached in anterior 
region (82.14% and 0.9005, respectively). These values are 
similar to those achieved in our previous work, when 
SampEn was computed over the same database [20]. 
However, in our previous study, the best results were 
obtained in posterior, anterior and central areas. Therefore, 
FuzzyEn may reflect more accurately the frontal dysfunction 
in ADHD. Nevertheless, these values should be taken with 

caution due to the small sample size. 

Our results suggest that FuzzyEn could be useful to help 
physicians in ADHD diagnosis. Nevertheless, some 
limitations of our study merit consideration. Firstly, the 
sample size is small. Moreover, the detected decrease in 
irregularity is not specific to ADHD, appearing in other 
brain disorders. Additionally, entropy values were averaged 
to simplify the interpretation of the results and to reduce the 
type I error in the statistical analysis, loosing the spatial 
information of MEG signals. Future efforts will be focussed 
on increase our database to confirm the performance of our 
method. Furthermore, in order to yield a more robust 
classifier, we will try to combine FuzzyEn results over the 
five brain regions. Finally, it may be useful to apply 
FuzzyEn algorithm and/or other types of entropy-based 
approaches to MEG activity in different frequency bands, 
since some of them (i.e. theta) may be more affected by 

ADHD [8, 9].  

In sum, our study leads us to conclude that MEG 
background activity in ADHD patients is more regular than 
in control subjects. The results obtained with FuzzyEn 
showed significant differences between ADHD patients and 
controls, indicating an abnormal type of dynamics associated 

with ADHD, especially in frontal brain region. 
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