
  

  

Abstract— Sample Entropy (SampEn) is a popular method 

for assessing the unpredictability of biological signals. Its 

calculation requires to preliminarily set the tolerance 

threshold r and the embedding dimension m. Even if most 

studies select m=2 and r=0.2 times the signal standard 

deviation, this choice is somewhat arbitrary. Effects of 

different r and m values on SampEn have been rarely 

assessed, because of the high computational burden of this 

task. Recently, however, a fast algorithm for estimating 

correlation sums (Norm Component Matrix, NCM) has been 

proposed that allows calculating SampEn quickly over wide 

ranges of r and m. 

The aim of our work is to describe the structure of SampEn 

of physiological signals with different complex dynamics as a 

function of m and r and in relation to the correlation sum. In 

particular, we investigate whether the criterion of “maximum 

entropy” for selecting r previously proposed for Approximate 

Entropy, also applies to SampEn; and whether information 

from correlation sums provides indications for the choice of r 

and m. For this aim we applied the NCM algorithm on 

electromyographic and mechanomyographic signals during 

isometric muscle contraction, estimating SampEn over wide 

ranges of r (0.01≤ r≤ 5) and m (from 1 to 11).  

Results indicate that the “maximum entropy” criterion to 

select r in Approximate Entropy cannot be applied to 

SampEn. However, the analysis of correlation sums 

alternatively suggests to choose r that at any m maximizes the 

number of “escaping vectors”, i.e., data points effectively 

contributing to the SampEn estimation. 

I. INTRODUCTION 

Entropy measures the degree of unpredictability of a 

time series. For physiological signals, frequently of limited 

duration, entropy is often assessed by the “Approximate 

Entropy”, ApEn [1], or “Sample Entropy”, SampEn, [2] 

estimators. ApEn and SampEn construct segments of m 

consecutive samples and represent each segment as a point 

in a space of m dimensions. When some of these points are 

grouped together, i.e., when they fall within a sphere of 

sufficiently small radius d, then the data segments are 

considered to be similar to each other. The distance d is 
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commonly expressed as the fraction r of the standard 

deviation SD of the time series, being d = r×SD. ApEn and 

SampEn calculate the conditional probability that segments 

similar in the m dimensional space remain similar when the 

number of dimensions increase by one (in other words, 

when the length of the data segments increases to m+1). 

Entropy is then estimated as the negative natural logarithm 

of this probability. ApEn and SampEn differ in the way the 

number of similar segments is calculated. It has been shown 

that the estimation bias is substantially lower for SampEn 

when the length N of the time series is relatively short, or 

the threshold r is particularly small [2].  

The values of r and m should be set before estimating 

ApEn or SampEn. When ApEn was originally proposed, 

synthesized deterministic and stochastic signals suggested 

to choose r between 0.10 and 0.25 and to set m=2 [3, 4]. 

This indication has been generally accepted and most 

entropy studies of real physiological signals calculated 

ApEn and SampEn with m=2 and r=0.20. However, this 

choice has been recently criticized. Regarding ApEn, an 

arbitrary choice of r may lead to contradictory results even 

if the selection remains within the 0.10-0.25 range [8]. 

Some authors suggested that the choice depends on the 

signal dynamics, the optimal r being larger for signals with 

faster dynamics, like neural signals, than with slower 

dynamics, like heart rate [5-7]. They proposed to choose the 

r value which maximizes the ApEn estimate, an approach 

that removes ambiguities in assessing complexity of 

synthesised processes [6]. However, this approach requires 

the estimation of a whole profile of ApEn as a function of r. 

This is often a very time consuming calculation, which 

limits the analysis of ApEn(r) to very few m values. 

Moreover, it is unclear whether this approach can be 

extended to the selection of r in SampEn, because a relative 

maximum in SampEn(r) may not be present even if it 

appears in ApEn(r) [5]. As to SampEn, its sensitivity to r 

turned out to be a major problem in a specific application: 

the detection of atrial fibrillation in very short heart rate 

series. In this case information on signals unpredictability 

was alternatively obtained from the quadratic sample 

entropy, index derived from SampEn but which depends 

less than SampEn on the choice of r [9].  

Until now detailed analysis of the features of ApEn(r) and 

SampEn(r) as a function of m have been limited by the 

required high computational burden. Recently, however, 

some of us presented a very fast algorithm for evaluating 
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the correlation sum, the Norm Component Matrix (NCM) 

algorithm [10]. By exploring the relationships between 

correlation sums and entropy, NCM also allows fast 

estimations of ApEn and SampEn over a wide range of m 

and r values.  

The aim of the present study is therefore to describe in 

details the SampEn structure as a function of r and m for  

physiological signals with different complex dynamics. In 

particular, we will explore the relations between correlation 

sums and SampEn; we will verify whether the “maximum 

entropy” criterion for selecting r can be also adopted for 

SampEn; and whether information from correlation sums 

provides indications for selecting r at any given m. This will 

be done by applying the new NCM algorithm on 

electromyographic and mechanomyographic signals in 

volunteers during isometric muscle contraction, and by 

comparing correlation sums and SampEn over a wide range 

of r and m values. 

II. METHODS 

A. SampEn Analysis by the NCM Algorithm 

Given a signal of N samples, {xi} with i=1,...N, let’s call 

{ui} the time series with zero mean and unit variance 

derived from {xi}. Fixed a time lag τ, the vectors 
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with Θ the Heaviside function:  
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The NCM algorithm is the fastest method for calculating 
the correlation sum. It builds the look-up table 

ni,j = ║ui-ui+(j+1)τ║  (8) 

of size (N − τ – 1) × [(N − 1)/τ – 1]. The symmetry of this 
matrix and the cumulative character of (7) speed up the 
calculations. The computation of Cm(r) between rmin and rmax 
is replaced by an arithmetic comparison of the norms (3) 
with r in (4), allowing a very dense r sampling. Details can 
be found in [10]. SampEn is derived from the correlation 
sum: 

SampEn(m,r) = -ln (Cm+1(r)/Cm(r))  (9). 

We set τ=1, as usually done in SampEn estimations. 

Moreover, we average ( )m

iS r  in (4) over all the Lm vectors: 
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In this way we derive the average number of “escaping” 
vectors E, i.e., the number of vectors that escape the 
neighborhood r when the segment length rises from m to 
m+1, as 

E(m,r)=Sm(r)-Sm+1(r)  (11). 

Substituting (6) in (11) we obtain: 

E(m,r)= 1

1
( )( 1) ( )( 1)m m

m m
C r L C r L+

+
− − −   (12). 

From (2), when N is much greater than m×τ,  

E(m,r)≅ N×(Cm(r)- Cm+1(r))    (13). 

Eq (13) indicates that the number of escaping vectors from 
one embedding dimension to the next one is proportional to 
the difference in the correlation sums of the two embedding 
dimensions. 

 

 

 
Figure 1. Example of data selection for entropy analysis. From top to 

bottom: mechanomyogram (MMG), electromyogram (EMG) and force 

during isometric contraction of ~25 s at 80% of maximal contraction force. 

A 20 s period of stable contraction is selected for the analysis. 
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B. Data Collection and Analysis 

Recordings were obtained in 8 male healthy volunteers. 
First, the force produced during an isometric maximal 
volitional contraction of the dominant arm was measured. 
Then, each subject performed an isometric contraction of 
the dominant arm for 25 s, with contraction force close to 
80% of his maximal force. In this phase, the 
electromyogram (EMG) and mechanomyogram (MMG) 
were simultaneously measured with electrodes and 
accelerometers placed on the biceps of the dominant arm. 
MMG has a lower frequency content than EMG, and may 
reflect characteristics resonance frequencies of the muscle 
fibers. Recordings were sampled at 2 KHz. Segments of 20 s 
duration with stable contraction force were visually selected 
for SampEn analysis (see an example in figure 1). 
Correlation sums of EMG and MMG were estimated by the 
NCM algorithm for r between 0.01 and 5, and m between 1 
and 11. E(m,r) and SampEn(m,r) were derived from the 
correlation sums. 

III. RESULTS 

Figure 2 shows an example of SampEn(m,r) analysis in 
one subject. The correlation sums increase with r between 0 
and 1, with lower values for larger m. This trend can be 
easily understood. When r is very small (r ~ 0), no neighbor 
points fall within the tolerance distance for almost all the 
segments and Cm(r) is close to 0. When r is very large (e.g., 
r=5), the neighborhood of most vectors contains almost all 
the segments and Cm(r) converges to 1. When m increases, 
the distance between couples of vectors may only increase 
or remain the same, explaining why Cm+1(r)≤Cm(r). EMG 
and MMG have similar Cm(r) values at the lowest and 
highest r, but the two bundles of curves differ, being larger 
the dispersion for EMG. Differences also appear in E(m,r), 
number of vectors escaping the neighborhood r. At the 
lowest r, E(m,r) is close to 0 because very few vectors have 
neighbors. Thus, very few vectors escape the neighborhood 
when m increases. E(m,r) is close to 0 also for the larger r 
because the tolerance is so wide that almost all the vectors 
remain similar when m increases. Therefore a low E(m,r) 
indicates that only a small fraction of the original N data 
effectively contribute to the estimation of SampEn. This 
happens when r is too small because vectors do not have 
neighbors, when r is too large because only vectors with the 
wider increases in d reflect the signal irregularity. The 
E(m,r) maximum, EMAX, identifies univocally a tolerance r, 
hereafter indicated rMAX, as a tradeoff between the number 
of vectors with neighbors, and sensitivity to detecting 
unpredictability.  

In figure 2, rMAX increases with m for both EMG and 
MMG. SampEn profiles do not show any clear maximum in 
r at any embedding dimension m. This is in contrast with 
ApEn, where maxima were repeatedly reported for a large 
variety of signals with very different dynamics [5-8]. 
However, differences between EMG and MMG appear also 
in SampEn. In particular, EMG estimates are “noisy” or not 
computable at the lower r when m≥3, probably reflecting 
the low number of points effectively contributing to the 
estimate. 

 

TABLE I. MAXIMUM OF E(m,r), EMAX, AND CORRESPONDING 

THRESHOLD r, rMAX: AVERAGE ON THE WHOLE GROUP (N=8) 

 

m 

EMG MMG 

rMAX EMAX rMAX EMAX 

1 0.47 3231 0.26 906 

2 0.72 2440 0.32 868 

3 0.92 2046 0.40 826 

4 1.07 1758 0.49 782 

5 1.19 1525 0.61 733 

6 1.29 1343 0.68 704 

7 1.37 1197 0.74 675 

8 1.43 1073 0.79 648 

9 1.49 979 0.89 599 

10 1.55 895 0.93 574 

 

 
Figure 2. Entropy analysis for the EMG and MMG segments of figure 1. 

From top to bottom: correlation sum C(m,r), function of the embedding 

dimension m and threshold r; number of “escaping vectors” E(m,r); sample 

entropy SampEn(m,r). Note the log scale for the horizontal axis of E(m,r) and 

SampEn(m,r). 
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Table I reports values of EMAX and of the corresponding 
tolerance thresholds, rMAX, over the whole group. For both 
signals EMAX decreases and rMAX increases with m. 
Moreover, also differences between these EMG and MMG 
parameters decrease with m. In particular,  EMAX and rMAX of 
MMG are 28% and 55% the corresponding EMG values at 
m=1, 64% and 60% the EMG values at m=10.   

No relative maxima appear in SampEn profiles averaged 
over the group (figure 3). EMG estimates look noisy when 
m≥5 and r<0.1. The SampEn estimate of MMG at m=2 
crosses estimates at contiguous embedding dimensions 
(m=1, 3 and 4) when r≤0.2, a behavior suggesting 
inconsistency of the estimator under certain conditions. 

The E(m,r) profile naturally indicates in rMAX a 
preferential r value. This approach univocally selects r 
taking into account its dependence on m and the intrinsic 
dynamics of the time series. SampEn calculated following 
this approach is shown in figure 4, as mean (SD) over the 
group. Values appear stable even at large m, probably 
because the choice r=rMAX avoids r thresholds associated to 
noisy estimates. This result is not granted if r is selected 
within the recommended 0.10-0.25 range, as figure 3 
suggested. Interestingly, the profile of SampEn as function 
of m indicates higher unpredictability of EMG compared to 
MMG at the lower embedding dimensions only. This could 
be related to the dampening of faster mechanical responses 
to EMG potentials due to muscle inertia, and/or to 
resonance phenomena in the muscular fibers. Both these 
mechanisms might have affected the MMG irregularity as 
observed in low-dimensional embedding spaces only.  

IV. CONCLUSION 

The availability of a fast algorithm for calculating 
correlation sums allows to describe in details the structure 
of SampEn of physiological time series. As to SampEn of 
EMG and MMG, we found high sensitivity to r, possible 
instability with m, and that the criterion of “maximum 
entropy” proposed for selecting r in ApEn cannot be 
applied. However, the analysis of the profiles of correlation 

sums suggests an alternative criterion for choosing r at any 
embedding dimension m: the r value maximizing the 
number of “escaping vectors” E. This approach appears 
promising and deserves further studies to better understand 
its theoretical and physiological meanings. 
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Figure 3. SampEn as function of embedding dimension m and threshold r: 

average over the group of 8 subjects.  
Figure 4. SampEn estimated at rMAX for m between 1 and 10: average ±SD 

over the group of 8 subjects. 
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