
  

  

Abstract— We present a modification of the well known 
transfer entropy (TE) which makes it able to detect, besides the 
direction and strength of the information transfer between 
coupled processes, its exact timing. The approach follows a 
decomposition strategy which identifies –according to a lag-
specific formulation of the concept of Granger causality– the 
set of time delays carrying significant information, and then 
assigns to each of these delays an amount of information 
transfer such that the total contribution yields the overall TE. 
We propose also a procedure for the practical estimation from 
time series data of the relevant delays and lag-specific TE in 
both bivariate and multivariate settings. The proposed 
approach is tested in simulations and in real cardiovascular 
time series, showing the feasibility of lag-specific TE 
estimation, the ability to reflect expected mechanisms of 
cardiovascular regulation, and the necessity of using the 
multivariate TE to properly assess time-lagged information 
transfer in the presence of multiple interacting systems. 

I. INTRODUCTION 

The transfer entropy (TE) is a well known measure of 
directional information transfer between coupled dynamical 
systems [1]. The popularity of TE for detecting directional 
dependencies from time series data stems from its solid 
foundation in information theory, its sensitivity to both linear 
and nonlinear interactions, and its close connection with the 
ubiquitous concept of Granger causality [2]. Thanks to these 
features, the TE is widely used to assess the transfer of 
information in physiological systems, though mostly 
following a bivariate approach whereby only the time series 
from the two investigated systems are considered [3,4]. 
However, bivariate TE analysis may lead to wrong inference 
of Granger causality when the two analyzed systems are 
potentially connected to other interacting systems [2,5]. Only 
recently, the introduction of data-efficient procedures 
tackling the problem of high-dimensional entropy estimation 
has made it possible to pursue fully multivariate approaches 
to the computation of TE [6,7]. 

A limitation of the TE is that it is not lag-specific, i.e., it 
quantifies the flow of information between systems without 
detecting the timing through which information flows. 
Evaluating the timing of information transfer may be of great 
importance to understand the function of complex networks 
such as those sub-serving physiological interactions. The 
present study introduces an approach to modify the TE in 
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order to make it able to detect the delay of Granger causal 
interactions between coupled processes. The approach is 
based on decomposing the TE into a sum of terms that 
quantify the information transfer at the specific time lags for 
which Granger causality exists between the two analyzed 
processes. We also present a procedure for the empirical 
estimation of lag-specific Granger causality and TE in both 
bivariate and multivariate settings. The overall approach is 
first validated on simulations of multiple stochastic 
processes, and then applied to cardiovascular and 
cardiorespiratory time series measured from healthy humans 
during a head-up tilt testing protocol. 

II. METHODS 

A.  Lag-Specific Granger Causality and Transfer Entropy 
Let us consider two dynamical systems X and Y, visiting 

states described by the discrete time stationary processes x 
and y, and denote as xn, yn the corresponding random 
variables at time n, and as Xn

─=(xn-1,xn-2,...), Yn
─=(yn-1,yn-2,...) 

the sets of all variables describing the past of the processes. 
Then, according to the original definition of Granger 
causality [8], G-causality from x to y, Xn

─→yn, exists if Xn
─ 

contains information that helps predicting yn above and 
beyond the information contained in Yn

─. A more general 
formulation of this notion is based on conditional 
probabilities, and can be formulated in the information 
domain in terms of the well known transfer entropy (TE) [1] 
stating that Xn

─→yn if and only if TEX→Y>0 [2], where 

 TEX→Y =I(yn, Xn
─|Yn

─). (1) 

The TE, which is formulated in (1) as a conditional mutual 
information (CMI), can be interpreted as the reduction of 
uncertainty about yn when learning the past of x, if the past of 
y is already known. The TE measures aggregate Granger 
causal influence of x at past lags, and thus is not lag-specific.  

In order to characterize Granger causal influences 
between processes for specific time lags, the definition of G-
causality can be intuitively itemized as follows: G-causality 
exists from x to y at lag u, xn-u→yn, if xn-u contains 
information that helps predicting yn above and beyond the 
information contained in Yn

─ and in Xn
─\xn-u (where \ denotes 

subtraction from a set). In the information domain, this 
definition can be formulated stating that xn-u→yn if and only if 
IX→Y(u)>0, where the CMI IX→Y(u) is defined as 

 IX→Y(u)=I(yn, xn-u|Yn
─, Xn

─\xn-u). (2) 

The CMI in (2) can be interpreted as the reduction of 
uncertainty about yn when learning the past of x at lag u, if 
the past of x at all other lags and the whole past of y are 
already known. While the condition IX→Y(u)>0 allows 
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assessing lag-specific G-causality, the modulus of IX→Y(u) 
cannot be directly related to the information transfer 
measured by the TE. To get a lag-specific measure of 
information transfer we propose to decompose the TE as 

( )k
L
k YX

u
ununnunnYX

uTE

x,,x,Yx,yITE
k

Lkk

∑

∑

= →

Λ∈
−−

−
−→

=

⎟
⎠
⎞⎜

⎝
⎛=

+

1

1 K

, (3) 

where the sum is extended to the set of lags Λ=(u1,...uL) for 
which lag specific G-causality exists (i.e., xn-u→yn if and only 
if u∈Λ). The decomposition in (3) puts in evidence lag-
specific information transfers, defined in a way such that 
their aggregate contribution yields the overall TE. In Sect. 
II.B we illustrate a procedure for estimating the set Λ of the 
lags bearing G-causality according to (2), and then the 
overall TEX→Y as well as the individual contributions 
TEX→Y(u) according to (3). 

While the above description refers to bivariate systems, it 
is well known that the presence of other systems potentially 
connected with X and Y might change the interpretation of G-
causality and TE computed as in (1) [2,5,8]. Thus, when 
measurements from these other systems, collected in the 
vector Z, are available in the form of the process z, a 
multivariate form of the TE, TEX→Y|Z=I(yn, Xn

─|Yn
─, Zn

─), needs 
to be used to rule out the information shared between X and Y 
that could be triggered by their common interaction with Z. 
Accordingly, in the multivariate case the presence of G-
causality is assessed checking for nonzero values of the CMI 
IX→Y|Z(u)=I(yn, xn-u|Yn

─, Zn
─, Xn

─\xn-u), and the decomposition in 
(3) is modified considering the quantities TEX→Y|Z(uk)=  
I(yn, xn-uk|Yn

─, Zn
─, xn-uk+1,..., xn-uL) as lag-specific information 

transfers composing the multivariate index TEX→Y|Z. 

B. Estimation Approach 
In this Section we propose a unified approach for 

estimating from time series data all measures defined above 
(i.e., both lag-specific and aggregate TE, in either the 
bivariate or multivariate formulation). The approach is based 
on recognizing that any CMI measure can be expressed as the 
difference between two conditional entropy (CE) terms; e.g., 
the multivariate aggregate TE can be expressed as 
TEX→Y|Z=I(yn, Xn

─|Yn
─, Zn

─)=H(yn|Yn
─, Zn

─)−H(yn|Xn
─,Yn

─, Zn
─), 

where H(y|v) is the CE measuring the entropy of the scalar 
variable y conditioned to the vector variable v. Then, we 
compute the CE according to a non-uniform conditioning 
scheme [7] that follows a sequential procedure whereby the 
conditioning vector v is updated progressively, taking all 
relevant processes into consideration at each step and 
selecting the components that better reduce the uncertainty 
about the target variable y. 

Specifically, a set of initial candidate components is first 
defined including the past of all relevant processes up to a 
maximum lag Lmax, i.e., Ωb=(xn-1,..., xn-Lmax,yn-1,...,yn-Lmax) for 
the bivariate analysis and Ω=(Ωb, zn-1,..., zn-Lmax) for the 
multivariate analysis. Then, we compute the entropy of the 
target variable yn conditioned to Ω starting from an empty 
conditioning vector, v0=(·), and proceeding as follows: at 

each step k≥1, form the candidate vector (w,vk-1), where 
w∈Ω, w∉vk-1, and compute the CE H(yn|w,vk-1); repeat the 
computation for all possible candidates, and then retain the 
candidate for which the estimated CE is minimum, i.e., set 
vk=(ŵ,vk-1) such that ŵ=arg minw H(yn|w,vk-1); terminate the 
procedure when an irrelevant component has been selected, 
i.e., when the CMI I(yn,ŵ|vk-1)=H(yn|vk-1)−H(yn|vk) is not 
statistically significant. The significance of the reduction in 
the CE brought by the candidate ŵ selected at step k was 
assessed empirically using surrogate data. Specifically, the 
CMI I(yn,ŵ|vk-1) was compared with a threshold taken as the 
100(1−α)th percentile of the distribution of the CMI 
computed after shifting the realizations of ŵ of a randomly 
selected lag with respect to yn and vk-1; if the original CMI 
was above the threshold, the component ŵ was included in 
the conditioning vector, otherwise it was discarded and the 
procedure terminated including k−1 components in the final 
vector v=vk-1. 

After termination of the sequential estimation procedure, 
the conditioning vector is composed as v=(vx, vy, vz), where 
vx, vy, and vz denote the components of v belonging 
respectively to X, Y, and Z. Then, computing the CMI 
between the lagged components of X and the target variable 
yn as IX→Y|Z(u)=H(yn|v\xn-u)−H(yn|v), we have that G-causality 
at lag u from X to Y is detected only when xn-u is selected by 
the conditioning procedure, because IX→Y|Z(u)>0 if xn-u∈vx and 
IX→Y|Z(u)=0 if xn-u∉vx. Therefore, our estimate of the set of 
lags bearing G-causality from X to Y is Λ={uk|xn-uk∈vx}. As a 
consequence, the lag-specific information transfer is 
estimated as TEX→Y|Z(u)=0 if u∉Λ (i.e., if xn-u∉vx), and as 
TEX→Y|Z(u)=H(yn|vy,vz,xn-uk+1,...,xn-uL)−H(yn|vy,vz,xn-uk,...,xn-uL) if 
u=uk∈Λ. The aggregate TE results either summing up all lag-
specific terms or computing TEX→Y|Z=H(yn|vy,vz)−H(yn|v). 
Note that estimation of all measures for pure bivariate 
systems results simply as a particular case in which the 
components of Z do not appear in the conditioning procedure 
(i.e., Ω=Ωb, vz=(·)). In this study, practical estimation of the 
CE from time series data was performed using the classical 
histogram-based method, that consists in coarse-graining the 
observed dynamics using Q quantization levels, and 
computing entropies by approximating probability 
distributions with the frequencies of occurrence of the 
quantized values [9]. 

 

III. VERIFICATION ON SIMULATED PROCESSES 

To test our approach on simulations reproducing 
oscillations and interactions typical of short-term vascular, 
cardiac and respiratory variability, we considered three 
systems X, Y and Z described by the stochastic processes 
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Figure 1.  Distribution over 100 realizations of (4) of the estimated 
bivariate and multivariate lag-specific TE (TEX→Y(u), TEX→Y|Z(u)), and 
corresponding number of realizations for which lag-specific G-causality 
was detected (n(IX→Y(u)>0), n(IX→Y|Z(u)>0)), computed for the coupled lags 
(u=d2, gray) and for the uncoupled lags (u≠d2, white) in the absence (c=0; 
panels a,c) and in the presence (c=0.4; panels b,d) of coupling from Z to Y. 

where un, vn, and wn are independent white noise processes 
with zero mean and unit variance, and x and z are described 
as second order autoregressive processes oscillating at the 
frequencies fx=0.1 and fz=0.3 (ρx=0.9, ρz=0.95). The imposed 
lag-specific G-causality relations are zn-d1→xn, xn-d2→yn, and 
zn-d3→yn (modulated by the coupling parameter c). We 
considered two coupling situations, the first with z affecting x 
but not y (c=0), and the second with z affecting both x and y 
(c=0.4). In each case, we generated 100 realizations of (4), 
each lasting 300 samples; at each realization, the coupling 
delays d1, d2, and d3 were randomly chosen between 1 and 5.  

The analysis was performed separately following the 
bivariate and the multivariate approach, and focusing on G-
causality from X to Y. The conditioning procedure was run 
including Lmax=5 components from each series in the set of 
initial candidates, setting α=0.05 as statistical significance 
level for candidate selection, and using Q=6 quantization 
levels for histogram-based entropy estimation. For each 
process realization, we detected a true positive (TP) 
information transfer when xn-d2 was selected in the 
conditioning procedure, and a false positive (FP) when the 
component xn-u, with u≠d2, was selected. False negative (FN) 
and true positive (TP) detections occurred when xn-d2 was not 
selected and when xn-u was not selected at u≠d2, respectively. 
Results are presented in Fig. 1, showing the distributions over 
all realizations of the estimated bivariate and multivariate TE 
obtained separately for u=d2 and for u≠d2, together with their 
corresponding relative frequency of detected G-causality for 
u=d2 (i.e., the percentage of TP) and for u≠d2 (i.e., the 
percentage of FP). We see that, in the absence of common 
driving of Z on both X and Y (parameter c=0), bivariate and 
multivariate TE perform equally well in picking up the 
correct interaction delays, as documented by the large TE 
values for u=d2 and null TE values for u≠d2 (Fig. 2a), and by 
the high detection rate combined with a low FP rate (Fig. 2c, 
indicating 100% sensitivity and 98% specificity in both 
cases). On the contrary, when Z affected  

Figure 2.  Distribution over 15 subjects of the estimated bivariate and 
multivariate TE from SAP to HP (TEX→Y, TEX→Y|Z; a), and corresponding 
number of realizations for which G-causality was detected (n(IX→Y>0), 
n(IX→Y|Z>0); b), computed in the supine (SU) and upright (UP) position. 

both X and Y (c=0.4) only the multivariate TE performed 
well, showing TEX→Y|Z(d2) well separated from TEX→Y|Z(u) for 
u≠d2 (Fig. 2b) with high TP rate (sensitivity=88%) and low 
FP rate (specificity=95%) (Fig. 2d, left), while the bivariate 
TE exhibited partially overlapping distributions of TEX→Y 
over coupled and uncoupled lags (Fig. 2b) and degraded 
accuracy in the identification of the interaction delays (Fig 
2d, right, indicating sensitivity=50%, specificity=89%). 

IV. APPLICATION TO CARDIOVASCULAR VARIABILITY 

The proposed approach was applied to cardiovascular and 
cardiorespiratory short-term interactions, considering the 
vascular, cardiac and respiratory systems respectively as 
systems X, Y and Z, and the systolic arterial pressure (SAP), 
heart period (HP) and respiratory flow (RF) as corresponding 
processes x, y, and z. Stationary realizations of the three 
processes, each lasting 300 samples, were obtained from 15 
young healthy subjects in the resting supine position (SU), 
and in the 60° upright position (UP) after passive head-up tilt 
[10]. The analysis was performed normalizing each time 
series to zero mean and unit variance, and then computing 
bivariate and multivariate TE from X to Y (analysis 
parameters: Lmax=10, α=0.05, Q=6). Since, according to the 
convention adopted to measure the time series, zero-lag 
effects of RF and SAP on HP are physiologically meaningful 
[11], the non-delayed components xn and zn were included in 
the candidate sets Ω and Ωb considered for describing the 
target variable yn [5]. 

Results of the analysis of overall information transfer 
from SAP to HP are depicted in Fig. 2. We found that in the 
supine position the bivariate approach assessed higher 
transfer than the multivariate approach, in terms of both TE 
values (Fig. 2a) and number of subjects with significant 
detected G-causality (Fig. 2b), while in the upright position 
the two approaches performed comparably. The trends 
observed for the multivariate TE confirm previous results 
suggesting an intensified transfer of information from SAP to 
HP with the supine-to-upright transition, probably reflecting 
an enhancement of the baroreflex control of heart rate [10]. 
On the contrary, the bivariate TE omitting to consider the 
effects of RF in SAP-HP causality analysis seems unable to 
highlight this expected activation of the baroreflex. 

The lag-specific analysis reported in Fig. 3 confirmed the 
overall TE analysis as regards the comparison between 
bivariate and multivariate approaches. Indeed, the observed  
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Figure 3.  Cumulative lag-specific TE from SAP to HP obtained summing 
over 15 subjects the values of the multivariate TE (TEX→Y|Z(u),a,c) and of the 
bivariate TE (TEX→Y(u), b,d) estimated in the supine position (a,b) and in the 
upright position (c,d). 

patterns of lag-specific causality were different between 
bivariate and multivariate TE in the supine position (Fig. 
3a,b), and very similar in the upright position (Fig. 3c,d). Our 
interpretation for this behavior is that the RF is known to 
affect strongly both SAP and HP in the resting condition 
[12], thus likely acting as a confounder in a bivariate SAP-
HP analysis, while it is less effective in driving HP during the 
orthostatic stress induced by tilt [13], thus exerting a reduced 
interference over the coupling between SAP and HP. Another 
interesting result of the entropy decomposition is the clear 
emergence of G-causality at small delays from SAP to HP 
with the tilting transition, documented by the big amount of 
multivariate TE measured at lag 0 in the upright position 
(Fig. 3c), compared with the absence of information transfer 
at the same lag in the supine position (Fig. 3a). This result 
suggests that the tilt-induced activation of the baroreflex is 
mainly manifested by means of fast, within-beat effects of 
SAP on HP variability, and is consistent with physiological 
evaluations reporting values lower than one second for the 
latency of this reflex [14]. 

V. CONCLUSIONS 
The most distinctive features of the approach proposed in 

this study to assess the strength and the delay of causal 
interactions between coupled processes are that it is 
designed: (i) to work in the model-free framework provided 
by information theory; (ii) to estimate nonzero information 
transfer only at the time lags for which significant causality 
exists according to a lag-specific formulation of the Granger 
notion [8]; and (iii) to quantify the information transfer in a 
way such that the sum of all contributions at the different 
time lags yields exactly the well-defined TE measure [1]. 
The reported simulation examples demonstrated the ability 
of the approach to recover the true interaction delays, and 
consequently to properly allocate the overall information 
transfer across time, in short process realizations mimicking 
the conditions typical of physiological time series analysis. 
The subsequent application to cardiovascular and 

cardiorespiratory series suggested the capability of the 
approach to detect both strength and timing of the 
cardiovascular information transfer in agreement with the 
expected behavior of important physiological control 
mechanisms such as the baroreflex [12-14]. Moreover, the 
comparison between bivariate and multivariate analyses 
confirmed that the proper assessment of Granger causal 
measures, like the TE and our lag-specific version, can be 
properly accomplished in cardiovascular variability analysis 
only compensating for the confounding effects of respiration 
on the joint variability of heart rate and arterial pressure 
[15]. 
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