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Abstract— In this paper a methodology to identify sleep
apnea events is presented. It uses four easily computable
features, three generally known ones and a newly proposed
feature. Of the three well known parameters, two are computed
from the RR interval time series and the other one from the
approximate respiratory signal derived from the ECG using
principal component analysis (PCA). The fourth feature is
proposed in this paper and it is computed from the principal
components of the QRS complexes. Together with a least
squares support vector machines (LS-SVM) classifier using an
RBF kernel, these four features achieve an accuracy on test data
larger than 85% for a subject independent classification, and
of more than 90% for a patient specific approach. These values
are comparable with other results in the literature, but have the
advantage that their computation is straightforward and much
simpler. This can be important when implemented in a home
monitoring system, which typically has limited computational
resources.

I. INTRODUCTION

Sleep apnea is considered an important factor for morbid-

ity and mortality due to its direct effect on the cardiovascular

system [1]. These effects are associated with physiological

functions such as systemic hypertension and increased sym-

pathetic activity that compromise the heart.

Different types of respiratory events were identified in

[2], and they are characterized by alterations in the airflow.

These alterations can consist of a reduced airflow as in

hypopneas or complete absence of airflow (during at least 10

seconds) as in apneas. The classification of respiratory events

as obstructive, mixed or central is based on the respiratory

effort.
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Currently, sleep apnea is diagnosed using poly(somno)-

graphy, which is a sleep test evaluated by a clinician, and

performed either in a hospital environment or at home. This

test monitors different physiological measurements such as

heart rate and respiration, which are significantly affected

during episodes of apnea. Although poly(somno)graphy is

nowadays the most important tool to diagnose sleep dis-

orders, its elevated costs and reduced comfort cause sleep

apnea to be under-diagnosed. To overcome this, several

studies like for instance [3], [4], [5] and [6], have considered

the possibility of detecting episodes of sleep apnea by using

only the ECG signal. In this way, home monitoring systems,

which are cheaper and more comfortable, can be developed

to detect and diagnose this disorder.

In general home monitoring systems have limited calcula-

tion power, and this eliminates the possibility to implement

computationally expensive algorithms. That is why methods

are needed that call for less processing, but which nonethe-

less achieve the same grade of accuracy as more demanding

algorithms. In this paper such a method is proposed which

uses a set of four very simple features. Amongst the features

there are three generally known ones: namely the standard

deviation of the RR intervals, the serial correlation coefficient

of the RR intervals and the standard deviation of the ECG de-

rived respiration using Principal Component Analysis (PCA)

[10]. In addition, a new feature is proposed here, based on

the percentage of variance explained by the second principal

component of a matrix formed by the QRS complexes.

This feature will be explained in more detail in the next

section. These features were used with a least squares support

vector machine (LS-SVM) classifier [7] using an RBF kernel,

to separate respiratory events from normal activity on two

different datasets.

The remainder of this paper is organized as follows.

Section II describes the two datasets used in this study and

the methodology implemented to analyze them. The results

are presented and discussed in section III and the conclusions

in the final section.

II. METHODOLOGY

A. Data

Two datasets were used in this study. The first one was

the Apnea-ECG database [3] publicly available on Physionet1

[8]. This dataset consists of 70 single-lead ECG recordings

sampled at 100Hz, and 8 respiratory signals available for 8 of

1www.physionet.org
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the 70 recordings. Each ECG signal was manually annotated

by an expert, who indicated on a minute-by-minute basis

whether an apnea episode occurred. These annotations do

not differentiate between types of respiratory events. In total

34 313 minutes were extracted and annotated.

The second dataset consists of 10 single-lead ECG signals

extracted from polysomnographic recordings of 10 different

patients of the sleep laboratory at the University Hospital

Leuven (UZ Leuven), Belgium. Additionally, respiratory

signals are available for 5 patients. All the signals were

sampled at 200Hz and their duration ranges from 320 to 469

minutes (384±47). In total 3 847 minutes were extracted and

annotated by a medical doctor experienced on interpreting

polysomnographic signals. These annotations correspond to

the beginning and duration of the “respiratory events”, and

they make a distinction between 5 different types: obstructive

apnea (OSA), obstructive hypopnea (OSH), hypopnea (HPA),

mixed (Mix), and central apnea (Cen).

B. ECG processing and RR interval time series

Initially, each signal was segmented into epochs of one

minute, which were then analyzed for artefacts using the

algorithm presented in [9]. If an ECG minute contained an

artefact, it was removed from the dataset. Then, each re-

maining ECG minute was processed using the Pan-Tompkins

algorithm, which identifies the position of the R-peaks.

Additionally, a search back procedure [5] was applied to

detect and correct ectopic and missing beats. Once the R-

peaks were identified, the RR interval time series were

obtained by taking the time intervals between successive

beats.

C. ECG derived respiration (EDR)

After identifying the R-peaks, three different methodolo-

gies, namely the amplitude of the R-peak, principal compo-

nent analysis (PCA) [10] and kernel principal component

analysis (kPCA) [11], were implemented to compute the

ECG derived respiratory (EDR) signals. These three methods

are based on the volume changes produced in the lungs

during a respiratory cycle, which on its turn modifies the

position of the electrodes with respect to the heart. In

other words, they exploit the mechanical interaction between

respiration and the morphology of the heart beats. Previous

studies validated these methodologies [10], [11], [12], and

they showed that the computed EDRs closely resemble the

real respiratory signals.

D. Feature extraction and Feature selection

To characterize each ECG minute, a set of time and

frequency domain parameters were derived from the RR

interval time series and three EDR signals. The time domain

parameters derived from the RR time series were the mean,

standard deviation, root mean square of inter-beat differen-

tials, standard deviation of inter-beat differentials, 5 serial

correlation coefficients and 4 fractal Alan factors. From the

EDR signals, only the mean and standard deviation were

calculated. Concerning the frequency domain, the same set of

features was extracted from the EDR and from the RR time

series. This set of features consists of variances of 5 levels

of wavelet decomposition, 32 points of the power spectrum,

power in the low frequency band (0.04-0.15Hz) and power

in the high frequency band (0.15-0.4Hz). The computation

of this set of features is described in [4].

This feature set was then expanded with an extra parameter

to reduce the complexity and the number of features needed

to classify respiratory events. This extra parameter is based

on the computation of the EDR signal using PCA. Usually,

only the end result of this computation is taken into account,

however, in this paper it is shown that a variation of the

procedure provides information that can be related to apnea

events. This becomes clear when this procedure is analyzed

in detail.

In [10] a collection of beat features extracted from the

single-lead ECG is aligned in a single matrix to which PCA

is applied. Once the principal components (PCs) of the new

matrix are computed, the first PC is closely related to the

respiratory signal. In this work, the selected beat feature is

the QRS complex, and the algorithm defines a window of

60ms around each R-peak, removes the mean and organizes

these windows in a QRS matrix X ∈ R
N×M , where N is

the number of beats, M = 0.06 × fs, and fs the sampling

frequency (see Fig. 1). The matrixX is transformed into a set

of principal components by means of the eigendecomposition

of its covariance matrix, and the first component is then

identified as the ECG derived respiration. The diagram of

Fig. 1 summarizes the procedure described above.

The variation proposed in this paper, applies the algo-

rithm to XT rather than X . The reasoning behind this

adaptation can be explained very intuitively. Applying the

procedure to X and keeping the first component gives an

estimation of the respiratory signal. When considering XT

rather than X , however, a “local” interpretation around each

R-peak is obtained. This local interpretation corresponds

to the morphology of the QRS complexes, which on its

turn is modulated by respiration. Because of this relation

with respiration, the local interpretation can be used to

distinguish between normal and abnormal minutes. This

is clarified in Fig. 2, where a comparison between the

eigenvalues of two minutes, one normal and one containing

an apneic event, is displayed together with the percentage of

variance explained by each component. These percentages

of variance are defined as (λi/
∑
λi) × 100, where λi is

the ith eigenvalue of the covariance matrix, i = 1, . . . ,m,

and m the window size. In the figure it is observed that

when apnea occurs, the percentage of variance explained by

the first eigenvector is reduced, while the variance explained

by the second increases. In other words, more components

are needed to describe the variations in the morphologies of

the QRS complexes. Taking into account the analysis above,

this study proposes to use both the percentage of variance

explained by the first and second principal components as

features.

After deriving the set of features described above, their

discrimination level was determined by means of the F1
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Fig. 1. Computation of the EDR signal using PCA [10]. From left to right: matrix containing the QRS complexes, general procedure to find the
principal components, eigenvalues of the covariance matrix, and EDR signal corresponding to the eigenvector with the highest eigenvalue. Note that the
first eigenvalue is large compared to the others, which indicates that most of the variance of the data is explained by its corresponding eigenvector.
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Fig. 2. Eigenvalues (λi) of the covariance matrix of XT for two different
ECG segments, one normal and one apneic. Note that the percentage
of variance explained by the second principal component becomes larger
during an apneic minute.

score, which ranges between 0 and 1. This score is equal

to 1 when the corresponding feature allows for perfect

classification of the data, and it is equal to 0 when no

differentiation between classes can be made.

E. Classification

The dataset was divided into training and test sets. For

the training set 2000 minutes were selected by means of

the fixed size method proposed in [7], which guarantees

that the underlying distribution of the data is approximated.

The number of samples in the training set is limited by the

memory and computational requirements of the classifier. In

this study the least squares version of the standard support

vector machines (SVM) [13] was implemented for the first

time to classify respiratory events. Least-squares SVM (LS-

SVM) simplifies the problem by defining the cost function

as a least squares problem, and equality constraints instead

of inequality constraints. This implies that a set of linear

equations is solved instead of a quadratic programming

problem as in traditional SVM. Different studies have shown

that for some applications the performance of LS-SVM is

comparable to or better than the one of SVM [7], [14], [15].

In [4] SVMs were used to classify sleep apnea, and the work

presented in this paper aims to obtain comparable results by

means of a simplified algorithm.

In this work, the performance of an LS-SVM classifier

using an RBF kernel and a linear kernel, was evaluated on

the test set using accuracy, sensitivity and specificity defined

as: Sens = TN/(TN + FP ) × 100, Spec = TP/(TP +
FN) × 100, and Acc = (TP + TN)/(TP + FP + TN +
FN) × 100, where TN, TP, FP and FN, correspond to the

true negative, true positive, false positive and false negative

events respectively.

III. RESULTS AND DISCUSSION

All computations were carried out in MATLAB on an Intel

Dual Core, 4GB. To perform classification, the LS-SVMLab2

toolbox was used.

After the removal of artefacts from each dataset, 30 648

minutes remained in Physionet and 3 495 minutes in the

Leuven dataset. Next, 177 features were extracted from

each minute of ECG, and evaluated using the F1 score.

Only the features with scores larger than 0.3 were used in

the classification step, as this threshold provided the most

accurate results. This highly discriminative set of features

consists of the standard deviation of the RR time series, the

serial correlation coefficient of the RR at 3 time lags, the

standard deviation of the EDR computed using PCA, and

the percentage of variance explained by the second principal

component as proposed in this paper. The performance of

each of the features individually is shown in Table I. The

values in the table already give an indication that the extra

parameter has a high discriminative power. With the addition

of this parameter, only four very straightforward features are

needed to achieve an accuracy comparable to previous results

in the literature for subject independent classification such

as in [5] with Acc > 85% with manual verification of the

QRS, and [4] with Acc ≈ 89%, amongst others. Note that

the algorithm presented in this paper is fully automated. No

manual verification of the Rpeak detection or of the set of

features was performed. From the table it is clear that the LS-

SVM classifier with an RBF kernel outperformed the linear

case.

The classification of the Physionet dataset for a subject

independent approach, gives an accuracy of 85.07% and an

area under the receiver operating characteristic curve (AUC)

of 0.9186 on test set, while for patient specific classifica-

tion an accuracy of 91.03% is reached. These results were

obtained with an LS-SVM classifier, using an RBF kernel

with kernel parameter σ = 0.77, a regularization parameter

γ = 10.45, and 10-fold cross-validation. As mentioned

before, this is in line with values in the literature, but

without computational expensive frequency domain features,

such as the ones derived using Fourier analysis and wavelet

decomposition.

2www.esat.kuleuven.be/sista/lssvmlab/
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Fig. 3. Boxplot of the percentage of the variance of the data that is
explained by the second component (%PC2). Note that there are clear
differences when comparing normal and obstructive apneas.

The discriminative power of the feature set becomes more

clear when it is applied to a dataset that labels different

types of respiratory events such as the Leuven dataset. First,

classification with each feature individually was performed,

the results of which are shown in Table I. From this table it

is clear that the percentage of variance again performs best.

Boxplots of this feature are shown in Fig. 3, where it differ-

entiates between obstructive apneas and normal segments.

Conclusions on the central and mixed apneas will not be

drawn due to the low amount of examples contained in the

dataset.

The classification of the dataset using all four features

gives an accuracy of 85.13% and AUC of 0.9029, and dis-

tinguishes two different classes. The class labeled as “apnea”

contained 87.90% of 372 OSA, 65.52% of 496 OSH, only

26.19% of 84 HPA, 95.65% of 23 Mix, 75% of 16 Cen, and

11% of 2504 normal minutes. This group of normal minutes

classified as apnea, contains the outliers indicated in the

“Normal” box of Fig. 3. This should not come as a surprise,

since hypopneas consist of a reduction in the airflow, rather

than an interruption of breathing. Additionally, these (non-

obstructive) hypopneas can manifest themselves while the

patient is awake [2]. As a result they are very similar to

normal minutes and hence more difficult to separate, even

for human experts.

To remedy for this, classification using only normal heart

rate and EDR based features should be expanded with

different signals such as SpO2 and CO2 [2] and [6].

TABLE I

TEST PERFORMANCES OF SLEEP APNEA CLASSIFICATION

Physionet Leuven

Feature Sens Spec Acc Sens Spec Acc

std(RR) 55.77 76.68 70.60 51.66 84.15 74.19
SCorr. Coef 67.88 78.33 74.00 58.06 65.23 61.98
std(EDR) 55.58 70.43 65.63 72.35 95.02 75.14
% PC2 75.54 74.23 74.11 76.79 95.39 77.01

All 4 (linear) 83.92 79.97 81.09 51.97 88.78 78.27

All 4 (RBF) 88.84 83.29 85.07 70.23 91.05 85.13

IV. CONCLUSION

In this paper, a classification using three well-known

time domain features and a newly proposed parameter was

performed. The new parameter was calculated using the

eigenvalues of the covariance matrix computed from the QRS

matrix. One big advantage of using this feature set together

with an LS-SVM classifier is that even though the features

are more “basic”, the performance is comparable to the best

results in the literature for fully automated methods. Another

advantage is that there is no need to perform demanding

algorithms, such as Fourier analysis and wavelet decomposi-

tion. This becomes particularly important when the algorithm

needs to be implemented in home monitoring systems, which

typically have limited hardware specifications.
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