
Respiration Amplitude Analysis for REM and NREM Sleep

Classification
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Abstract— In previous work, single-night polysomnography
recordings (PSG) of respiratory effort and electrocardiogram
(ECG) signals combined with actigraphy were used to classify
sleep and wake states. In this study, we aim at classifying rapid-
eye-movement (REM) and non-REM (NREM) sleep states. Be-
sides the existing features used for sleep and wake classification,
we propose a set of new features based on respiration amplitude.
This choice is motivated by the observation that the breathing
pattern has a more regular amplitude during NREM sleep than
during REM sleep. Experiments were conducted with a data set
of 14 healthy subjects using a linear discriminant (LD) classifier.
Leave-one-subject-out cross-validations show that adding the
new features into the existing feature set results in an increase
in Cohen’s Kappa coefficient to a value of κ = 0.59 (overall
accuracy of 87.6%) compared to that obtained without using
these features (κ of 0.54 and overall accuracy of 86.4%). In
addition, we compared the results to those reported in some
other studies with different features and signal modalities.

I. INTRODUCTION

Over-night polysomnography (PSG) is currently consid-

ered as “gold standard” for objectively assessing sleep ar-

chitecture and occurrence of sleep-related disorders [1], [2].

PSG recordings are typically collected in sleep laboratories

and are usually split into non-overlapping time intervals

(or epochs) of 30 seconds [1]. According to the American

Association of Sleep Medicine (AASM), sleep can be divided

into different states: wake, rapid-eye-movement (REM), and

non-REM (NREM) which is further subdivided in sleep

stages N1, N2 and N3 [3].

Several automatic wake-REM-NREM classifiers have been

proposed which use multiple physiological signals including

actigraphy, electrocardiogram (ECG), and respiratory effort

[2], [4]. These signals contain information from which dif-

ferent sleep states can be derived [2], [5]. Using information

extracted from these signals in so-called “features”, most

proposed systems employ a single classifier and use a set

of fixed features to classify different sleep stages. However,

this may not be the most appropriate approach since the best

set of features which characterizes a given stage may not be

necessarily the same which characterizes another. This is due

to differences in the expression of autonomic nervous activity
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associated with different sleep states [5]. Thus we adopt a

“hierarchical” scheme containing two levels. On a first level

we classify epochs as sleep and wake, and on a second level,

as REM and NREM. Our previous studies have addressed

the problem of sleep and wake classification using multiple

signal modalities including actigraphy, respiratory effort, and

ECG signals [6], [7], [8]. The main reason of using these

three types of modalities is that, to some extent, they are

possible to be unobtrusively acquired [2], [4], [6]. As a

follow-up, this study explores REM and NREM classification

based on the idealistic assumption that all the sleep and wake

stages can be correctly classified. Although experiments have

shown that in practice this assumption does not hold, it is

important to know to what extent a classifier and the existing

feature set can discriminate between REM and NREM sleep

states. Therefore, in this paper, we focus exclusively on

the problem of REM and NREM classification instead of

simultaneously considering all sleep stages.

Regarding REM and NREM classification, the same fea-

tures used for sleep and wake classification based on actig-

raphy, respiratory effort and ECG data were first considered

(see Section III-A). In addition, it has been shown that

the amplitude of the breathing effort signal is more regular

during NREM sleep than during REM sleep [9]; and also

the tidal volume decreases and the respiratory variability

increases when the state changes from NREM to REM [10].

Thus, we propose a new set of features that represent

information about the respiration amplitude.

The problem of REM and NREM discrimination is not

new. Some studies have reported relative success in the

discrimination between REM and NREM sleep states in a

hierarchical approach based on heart rate variability (HRV)

derived from ECG signals [11] and on the combination

of peripheral arterial tone, pulse rate, pulse oximetry, and

actigraphy [12]. In order to evaluate the impact of the new

feature set and the overall REM and NREM classification

performance, we will compare the results of our classifier

with those reported in literature.

II. DATA SET

Fourteen single-night PSG recordings of healthy subjects

(4 males and 10 females, with age 30.6 ± 10.7 y and BMI

24.4 ± 3.4 kg/m2) were included in our data set. A subject

is considered “healthy” if he or she has a Pittsburg Sleep

Quality Index (PSQI) of less than 6. Among the subjects,

nine were monitored in the Sleep Health Center, Boston,

USA during 2009 and five in the Philips Experience Lab,
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Fig. 1. A typical example of a 2-min respiratory effort signal (i.e., 4
epochs) in REM (top) and NREM (bottom) sleep states. The peaks and
troughs are represented by filled circles and squares, respectively.

Eindhoven, the Netherlands during 2010. Actigraphy and

full PSG were recorded for each subject and sleep stages

were scored by an expert according to the AASM guidelines

[3]. From the PSG recordings, the thoracic respiratory effort

signal and the ECG data were used. Compared to our

previous work where we analyzed 15 subjects [8], one was

excluded due to technical problems with the recordings.

III. FEATURE SET DESCRIPTION

A. Existing Features

The existing pool of 65 features that has been used in

previous studies for sleep and wake classification was first

considered [6], [7]. It consists of activity counts derived from

actigraphy [6], respiratory and ECG (HRV) features in time

and frequency domain [2], and non-linear features based on

detrended fluctuation analysis [13], sample entropy [14], and

dynamic warping [7].

B. Respiration Amplitude Analysis

As mentioned in Section I, the amplitude of the respiratory

effort signal is different during REM and NREM. In order

to represent these differences, a number of features were

implemented with the ultimate goal of improving REM and

NREM classification performance.

Fig. 1 illustrates two short segments of a normalized

respiratory effort signal during REM and during NREM sleep

(the normalization will be explained later). It can be observed

that the envelopes formed by the peak and trough sequences

of the REM signal, when compared with the NREM signal:

i) are more ‘irregular’; ii) have generally a lower absolute

mean (or median); and iii) have larger variance.

In addition, we also considered the respiratory effort ‘area’

comprised between the respiratory effort amplitude and its

mean value (zero in the example below). It is assumed

that this area, to a certain degree, correlates with breathing

volume. Respiratory effort has often been used as a surrogate

of tidal volume since it is obtained by measuring volume
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Fig. 2. A typical example of a 30-s respiratory effort signal (i.e., one
epoch) in REM (top) and NREM (bottom) sleep states. The areas between
the curves and the baseline are filled in gray. The inhalation and exhalation
periods of one breathing cycle are indicated.

TABLE I

DESCRIPTION OF RAB FEATURES

Feature Description

resp p sdmedian Standardized median (median divided

resp t sdmedian by standard deviation) of peaks/troughs

resp p ApEn Peak/trough sequence ‘regularity’,

resp t ApEn measured by approximate entropy [14]

resp p to t diff Median of peak-to-trough differences

resp cyc area Median of respiratory effort area during

resp inh area breathing cycles, inhalation or exhalation

resp exh area segments

resp cyc aot Median of respiratory effort area over

resp inh aot time (aot) measured during breathing

resp exh aot cycles, inhalation or exhalation segments

resp time ratio Ratio between the medians of respiratory

resp aot ratio effort time/aot during inhalation and

exhalation segments

changes of chest and/or abdominal (e.g., respiratory induc-

tance plethysmography, or RIP) [15]. It has been reported

that the tidal volume, minute ventilation, and inspiratory

flow rate in REM sleep are significantly lower than those

in NREM sleep [10]. These are illustrated in Figure 2,

suggesting a difference between REM and NREM in terms

of respiratory effort area.

C. Respiration-Amplitude-Based Features

Based on these observations we implemented 13 new

features. These respiration-amplitude-based (RAB) features

are listed and described in Table I. All these features use a

window of 3 epochs centered on each epoch of interest.

To extract the RAB features, it is important to precisely de-

tect and locate the peaks and troughs and the transition points

between inhalation and exhalation from the raw respiratory

effort signal. This was achieved with some steps comprising:

1) high-frequency noise filtering; 2) baseline removal; 3)

turning point detection based on sign change of signal slope;

and 4) correction of falsely detected peaks/troughs. The

signal resulting from step 2) was further normalized by

dividing the median peak-to-trough amplitude estimated over

the entire recording before further feature extraction.
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D. Signal Calibration

The respiration amplitude might be affected by body

movements during sleep because the sensor position may

shift and/or stretch. This would lead to an uneven comparison

of the signal amplitude before and after body movement, pos-

sibly yielding errors while computing the features. To avoid

this issue, we normalized each signal segment between two

epochs with body movements to zero mean and unit variance.

These epochs were identified by comparing their activity

counts with a threshold. A threshold of 2 was experimentally

found to be an adequate value for this purpose.

IV. REM AND NREM CLASSIFICATION

A. Discriminative Power

In order to evaluate the discriminative power (i.e., class

separability) of the features in classifying REM and NREM,

a Mahalanobis distance (MD) metric [16] was employed.

Given a single feature f , the inter-class MD between the

two classes (labeled as REM and NREM) is expressed as

DM f =
|µR f − µN f |

σf
, (1)

where µR f and µN f are the population means of REM

and NREM, respectively; and σf is the standard deviation

of the feature f . This equation is also called the absolute

standardized distance of means, a simplified version of a MD

with a single dimension. A larger DM f reflects a higher

discriminative power in separating the two classes.

B. Classifier

A linear discriminant (LD) classifier has been used for

sleep and wake classification in previous studies [6], [7],

[8]. Likewise, we adopted a similar classifier for REM and

NREM classification. To assess the performance of classi-

fication, conventional measures of sensitivity (proportion of

correctly identified actual REM epochs) and specificity (pro-

portion of correctly identified actual NREM epochs) used in

a binary classification were first considered. However, since

the relative epoch count for the REM class (17.9%) during

a whole-night recording is usually much smaller than for

the NREM class (82.1%), in what is called imbalanced class

distribution, these measures may not be the most appropriate

criteria. The Cohen’s Kappa coefficient of agreement κ is

considered a better criterion for this problem [17]. It does

not only allow for a better understanding of the general

performance of the classifier in correctly identifying both

classes, but also allows for a better representation of the

imbalanced problem when used as a criterion to optimize

performance [2], [17]. The classifier was evaluated using

a leave-one-subject-out cross-validation (LOSOCV) proce-

dure. In the following, REM and NREM were considered

the positive and the negative class, respectively.

C. Feature Selection

Before classification, we applied a Sequential Forward Se-

lection (SFS) algorithm to select features that optimizing the

final classification performance, as measured by κ. This step

was performed on each training set of the cross-validation.

The selected features were then used for REM and NREM

classification on the testing set of every LOSOCV iteration.

These tests were conducted with feature sets comprising the

existing pool of 65 features, the 13 new RAB features, and

the combination of the existing features and the RAB features

(in a total of 78 features), which are denoted F-EXST, F-

RAB, and F-COMB, respectively. Note that because feature

selection is performed on each iteration of the LOSOCV, the

selected features for each iteration can be different.

V. RESULTS AND DISCUSSION

Table II indicates the mean MD values for the RAB

features and the maximal Spearman correlation Cmax be-

tween this RAB feature and all the other existing features.

It also indicates the number of times δ each RAB feature

has been selected by the SFS algorithm from all the 78

features on the 14 iterations of the LOSOCV procedure, on

a minimum of 0 (never selected) and a maximum of 14 (al-

ways selected). For comparison, we also indicate the feature

resp std 5 epochs (i.e., standard deviation of respiratory

frequency over 5 epochs) in the table since this feature is

with the highest MD value among the original set of features

F-EXST. It can be observed that the first four features were

frequently selected during cross-validation. Although the

features resp p ApEn, resp t ApEn, resp p to t diff ,

resp time ratio, and resp aot ratio have smaller MDs

compared with some of the other RAB features, they were

selected more often. This is because, as shown in the table,

these features are less correlated to the other features and

therefore add discriminatory information. Besides this, some

RAB features were selected few times, which might be be-

cause: 1) they were not very discriminative for corresponding

training sets; or 2) they correlated a lot with other features

that had already been selected before during the SFS feature

selection process (see Table II).

TABLE II

SUMMARY OF SOME STATISTICS OF THE RAB FEATURES

Feature DM Cmax
∗ δ∗∗

resp p sdmedian 0.79 0.60 13

resp t sdmedian 0.76 0.57 14

resp p ApEn 0.34 0.35 12

resp t ApEn 0.24 0.29 10

resp p to t diff 0.68 0.19 8

resp cyc area 0.81 0.59 3

resp inh area 0.75 0.61 4

resp exh area 0.84 0.54 4

resp cyc aot 0.78 0.59 5

resp inh aot 0.81 0.55 2

resp exh aot 0.73 0.59 5

resp time ratio 0.44 0.12 4

resp aot ratio 0.44 0.12 5

resp std 5 epochs 1.14 — 14
∗The maximal Spearman correlation between the RAB feature and

each of the other existing features.
∗∗Indicates the number of iterations for which a feature was selected

based on SFS algorithm for classification across the 14 iterations of

LOSOCV. All 78 features were considered in each iteration.
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TABLE III

COMPARISON OF REM AND NREM CLASSIFICATION PERFORMANCE

Feature Set # Epochs # Subjects Algorithm Accuracy (%) Sensitivity (%) Specificity (%) κ

F-EXST∗ 10,429 14 LD 86.4 63.5 91.4 0.54

F-RAB∗ 10,429 14 LD 81.4 40.0 90.6 0.32

F-COMB∗ 10,429 14 LD 87.6 68.2 91.7 0.59

ECG features† [11] ∼20,000 24 HMM§ 79.3 70.2 85.1 0.55

Watch-PAT features†,‡ [12] 142,919 227 ARDA [18] 88.5 68.1 91.8 0.59

Note: The table indicates the pooled results over subjects.
∗On average, for the feature sets F-RAB, F-EXST and F-COMB, 6.2, 34.4 and 40.8 features were selected (based on SFS) over all iterations of LOSOCV.
†The results were re-computed based on the corresponding reported confusion matrix.
‡The features were extracted from actigraphy, pulse rate, oxyhemoglobin saturation, and finger arterial pulse wave volume.
§Hidden Markov Model.

Table III compares the classification performance obtained

with the existing features (F-EXST), with the RAB features

(F-RAB), and with the combination of them (F-COMB). It

shows that adding the RAB to the existing features led to

a clear increase in Cohen’s Kappa coefficient κ (from 0.54

to 0.59). Additionally, Table III also compares the results

of our classifier with other results reported in literature.

One of the first observations is that our classifier slightly

outperforms that achieved with only ECG features [11]

(κ = 0.55). Moreover, our results are comparable to those

obtained with the Watch-PAT feature set [12] (κ = 0.59),

which used features derived from the peripheral arterial tone

and oxyhemoglobin information besides to heart rate (i.e.,

pulse rate) and actigraphy. Note that 227 subjects were

recruited in that study, which is much more than our study.

Therefore, it is suggested to further test our classifier based

on a larger data set with more subjects.

Although the addition of the RAB features results in an

overall classification performance improvement, the variance

remains high (average κ and average sensitivity over all

subjects are 0.59 ± 0.21 and 68.4 ± 21.4%, respectively).

This can be explained by the large physiological differences

between subjects in the way sleep stages are expressed

on respiratory and cardiac features. This naturally leads to

difficulties in further improving classification performance.

Hence, it is worth further investigating how to reduce the

between-subject variation of the features.

Furthermore, it was assumed that the respiratory effort

area can accurately represent breathing tidal volume when

extracting some RAB features. However, this is not always a

reasonable assumption, particularly for subjects who change

their posture during sleep [19]. In those cases such features

can be inaccurate, thus harming classification performance.

This challenge should be further studied.

Finally, due to the small size of data set used in this study

(only with 14 subjects), we applied LOSOCV to evaluate the

classifier instead of dividing the data into training and testing

sets. Thus, again, it is suggested to evaluate our classifier on

a larger-sized data set with separated training set and testing

set in the future.
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