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Abstract² Apnoea is a sleep related breathing disorder that 

is common in adults and can be described as a temporary 

closure in the upper airway during sleep.  A system using time 

series analysis of one minute epochs of respiratory impedance 

signals to detect apnoea is described.  An algorithm has been 

developed using MATLAB for extracting clinically 

recognizable features from the respiratory impedance signal.  

One minute samples are classified using kNN classification of 

the feature set.  The output of the system has been shown to 

detect apnoeic episodes in eight eight-hour patient records 

collected from the PhysioNet database.  The specificity of the 

classifier is 88.1% and the sensitivity is 95.7%.  ROC analysis 

was performed and the area under the ROC curve is 0.9604.  

Future research will include testing the classifier in a much 

larger dataset and also a novel method for the presentation of 

classification results to physicians.  

I. INTRODUCTION 

Apnoea is a sleep related breathing disorder that is 

common in adults.  Apnoea that goes undiagnosed can be a 

risk factor for some cardiovascular diseases.  Therefore, 

early detection of apnoea in patients is essential.  Currently, 

classification of apnoeic episodes is performed using 

polysomnography, which is an expensive process involving 

the patient spending the night in a sleep lab connected to 

devices recording several physiological signals and being 

monitored by medical professionals. 

In this paper, we present a system for the automatic 

detection of sleep apnoea using k-Nearest-Neighbour (kNN) 

classification of clinically recognizable features.  The system 

extracts these features from only the respiratory impedance 

(RI) signal of the patient, which can be captured from 

standard bedside monitors in real-time.  We report our 

analysis results of using this approach as the sensitivity and 

specificity of the algorithm compared to apnoea datasets 

annotated by human experts. 

II. BACKGROUND AND RELATED WORK 

A. Sleep Apnoea 

Sleep related breathing disorders are common in the 

adult population and has been reported to be found in 4% of 

men and 2% of women [1].  The most prevalent type of 

sleep related breathing disorder in adults is obstructive sleep 

apnoea (OSA), accounting for about 84% of cases [2].   OSA 

can be defined as a temporary closure of the upper airway 

during sleep when air is prevented from entering the lungs 

 
1
A. Thommandram and J.M. Eklund are with the Department of 

Electrical, Computer and Software Engineering, University of Ontario 

Institute of Technology, Oshawa, ON L1H 7K4, Canada.   
2
C. McGregor is with the Faculty of Business and Information 

Technology, University of Ontario Institute of Technology. 

Corresponding author: mikael.eklund@uoit.ca. 

 

[3].  This obstruction produces a negative pressure in the 

airway and results in ineffective airflow, where the amount 

of oxygen inhaled decreases and the concentration of CO2 

increases.  Episodes of OSA are typically accompanied by a 

drop in blood oxygen saturation which leads to a central 

nervous system activation, triggering the airway to open 

without the patient even knowing.  This phenomenon has 

been observed to repeat over 600 times in a single night in 

patients with severe sleep apnoea [4].   In other cases, the 

activation causes the patient to wake up in order to breathe.  

The disjointed sleep pattern due to OSA can lead to 

excessive daytime sleepiness, poorer cognitive performance 

and depression.  Also, OSA that goes undiagnosed has been 

discovered to be a factor in the development of 

hypertension, congestive heart failure and even stroke [5, 6].   

A typical sleep study involves recording multiple 

channels of various bio-signals requiring many sophisticated 

devices and electrode attachments to patients as well as 

specialised attending personnel.  The cost and availability of 

these resources present an opportunity for low cost and more 

accessible screening methods. Opportunities abound to 

support the monitoring of patients using techniques such as 

we propose while they sleep in their bed in their own homes. 

B. Related Work 

Most automated detection schemes involve black box 
modeling systems such as artificial neural networks.  While 
some of these systems perform well, their adoption in 
practice is very low, possibly because of the lack of traceable 
rules inherent to black box systems [7].  Obstructive sleep 
apnoea and hypopnoea can be automatically detected by 
extracting wavelet-based features in electrocardiogram 
(ECG) recordings and finding patterns using a feed forward 
neural network [8].  The ECG waveform is the most used 
signal in the development of apnoea detection algorithms.  
Although apnoea is a respiratory condition, it is widely 
recognised that the effects can be seen in the ECG.  Mendez 
et al. demonstrated the importance of using time-variant or 
time-frequency approaches for correctly managing the non-
stationarities in the signals, typical of apnoea episodes [9]. 

A signal representing the respiratory rate can be generated 
from an ECG signal by detecting peaks in the waveform.  
These signals, called ECG derived respiratory signals (EDR) 
are a vital part of apnoea detection algorithms.  Avci et al 
used wavelet decompositions of EDR signals used the 
wavelet detail components as features for classification 
through a nonlinear auto-regressive type artificial neural 
network.  They achieved an accuracy of 93.3% in the subject-
based assessment [10].  Correa explored the value of the 
power spectrum of several EDR signals in classifying 
apnoea.  Power spectral density was calculated for each 
epoch and central, mean and peak frequencies were obtained.  
They used a threshold based decision process to classify the 
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minute sample as apnoea or not apnoea.  They found that 
spectral analysis of the R-wave area of ECG can be a useful 
indicator of apnoea [11].  Spectrum analysis on ECG has 
been used in various ways in the past in attempts to find 
underlying patterns in the data that cannot be noticed with 
simple visual analysis.  Liu et al. used the ECG to generate a 
heart rate variability (HRV) signal and performed spectrum 
analysis on it.  An interesting finding was that the modulation 
in HRV was a little earlier than the start and the end of a 
sleep apnoea event by about 5 seconds.  This can be useful 
for real time monitoring and intervention [12]. 

Yilmaz et al. attempted to not only classify apneic 
episodes, but also to determine the sleep stage of a patient at 
any point in time.  They also use the ECG R-R interval (RRI) 
data and extract 4 features that are put through a support 
vector machine (SVM) algorithm.  They achieved an 
accuracy of 76% for sleep stage scoring and 87% accuracy 
for the detection of apnoea [13]. Ghunaimi et al. used 
Statistical Signal Characterization (SSC) to determine apneic 
episodes.  They took the Hilbert transform of the R-R interval 
signal, which produces an analytical signal that is useful for 
calculating instantaneous attributes of a series at any point in 
time.  They computed the amplitude mean, amplitude 
deviation, period mean, and period deviation over a 5 minute 
moving window and chose optimal threshold values based on 
receiver operator characteristic (ROC) analysis [14].  
Schluter et al. developed a decision tree classifier towards an 
approach for automatic sleep stage scoring and apnoea 
detection by using rules formulated for sleep technicians for 
manual scoring.  They used derivative dynamic time warping 
(DDTW) to perform pattern matching to detect the same 
shapes in the signal as a sleep technician would detect [15].   

It has been hypothesized that simple features can still be 
sufficient for accurate detection if extracted from a variety of 
signals.  Belal et al. used a combination of HR, RR and SpO2 
features and fed them to a neural network to find correlations 
[16].  Xie et al. examined the performances of apnoea 
detection using ECG and saturation of peripheral oxygen 
(SpO2) signals, individually and in combination.  They used 
the ECG features proposed by referenced literature and 
focused on feature designs of the SpO2 due to the strong 
reflection of arterial oxygen saturation on the airflow 
fluctuation.  They found the best results came when they used 
31 SpO2 features and 8 ECG features and put them through a 
combination of three classifiers with the final decision made 
by majority voting [17].  Using 39 features to get a good 
accuracy may seem excessive when compared to the process 
a human expert takes to perform the same classification.  Isa 
et al. assessed the performance of several classification 
methods using different ECG feature sets proposed in 
literature.  They found a higher overall accuracy when using 
only 3 features than they did with a system that used 8 
features.  This shows that a large number of features are not 
necessary to achieve success.  Another finding of their 
research is that particular classification techniques work 
better on particular types of feature sets [18]. 

Apart from the ECG, the RI waveform is believed to be 

very valuable for apnoea detection as it is directly correlated 

to breathing effort.  Lee et al. recognized that RI signals also 

contain fluctuations caused by the beating of the heart.  

These fluctuations are misinterpreted as breaths by bedside 

monitors and cause inaccurate alarms [19].  They developed 

a cardiac filter that involved resampling the RI at the 

frequency of the ECG to reduce the effect of the periodic 

fluctuations caused by the heart.  Some research has moved 

in a different direction, taking the respiratory measurement 

from locations other than the chest.  Ansari et al. discovered 

that it is possible to extract a reliable RR using signal 

processing from impedance measured across the arm [20].  

While this method resolves the cardiac effect, it is prone to 

movement artifacts.  Yen et al. describe a method for 

detecting apneic events in patients while they were titrated 

for continuous positive airway pressure (CPAP).  They 

obtain an RI signal using a forced oscillation technique 

which applies an oscillatory pressure signal to the 

respiratory system and measuring nasal pressure and airflow.  

This airway impedance value was compared to a fixed 

threshold to classify apnoea [21]. 

Our approach is unique in that we are using only the RI 

waveform to detect apnoea and no ECG, HR, or SpO2 

signals to provide a more detailed view of events.  Obtaining 

an RI signal can be done in several ways.  One way is to 

measure the impedance between ECG leads, but another 

method is to use a strap across the chest of a patient and 

measuring expansion and contraction through a strain gauge 

type device. These devices can be manufactured very 

cheaply and have application for home based monitoring 

removing reliance on the skilled placement of the ECG 

leads.  Through this study we will ascertain the feasibility of 

creating an apnoea detection system that produces sufficient 

accuracy using minimal cost hardware and sensors. 

III. METHODOLOGY 

A. Data 

The PhysioNet Apnoea-ECG database is used in this 

study.  The database is comprised of 70 records of patient 

data, containing a digitized 100Hz ECG signal.  40 records 

were of apnoeic patients, 10 records were considered 

borderline and 20 were control records.  Each recording has 

approximately eight hours of data and is accompanied with a 

set of reference apnoea annotations.  The annotations were 

derived by human experts on the basis of simultaneously 

recorded related signals [22, 23].  There is an annotation for 

each minute of the recording to indicate the presence of 

apnoea during that minute.  Although the database is 

primarily for ECG recordings, eight of the recordings also 

have respiratory effort signals.  Chest and abdominal 

respiratory effort signals were obtained using inductance 

plethysmography and oronasal airflow was measured using 

nasal thermistors.   

For our study, we focus solely on the respiratory effort 

signal measured across the chest present in eight of the 

records.  This waveform is also called the respiratory 

impedance (RI) signal, as it is generated by measuring the 

impedance of a wire coil strapped around a persRQ¶V� ULE�
cage.  The signal value increases as the chest expands during 

inspiration and decreases as the chest contracts during 

expiration.  A one hour sample of an apnoea record from 

PhysioNet showing the respiratory signal and annotations 

�µ$¶�IRU�apnoeic, µ�¶�IRU�QRQ-apnoeic) is shown in Fig. 1. 
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Figure 1. One hour sample ofrespiratory impedance at the chest along with 

apnoea annotations. 

B. Feature Extraction 

A core aspect of any classification problem is 

constructing a meaningful feature set. Many approaches to 

automatic detection and classification of apnoea use purely 

statistical values such as spectral variances and entropy. 

Such features do not necessarily have any meaning to a 

human expert. While some of the systems perform quite 

well, there is much reluctance by medical professionals in 

adopting such systems simply because the reasoning behind 

the classifications is so different from their training. As a 

goal for our research, the features must be clinically 

recognizable. This refers to features that are not purely 

mathematical or statistical in nature. They are things that 

human experts observe when deciding if a signal is apnoeic. 

A key step in selecting features is determining the 

breaths taken by the patient. To do this, the RI wave is used 

to define the interval between breaths from the peaks of the 

impedance waveform, which correspond to the maximum 

chest expansion in each breath. The peaks are found using 

an edge detection algorithm written in MATLAB. The 

signal is normalized and the locations and characteristics of 

the peaks are recorded. Four normalized one minute 

window samples are shown in Fig. 2. Samples 1 and 2 are 

annotated as non-apnoeic and samples 3 and 4 are marked as 

apnoeic by human experts. 
No1malized Sample ~ 

-~~ 
0 1000 2000 3000 4000 5000 6000 

Normal1Zed Sample 2 

-~~ 
0 1000 2000 3000 4000 5000 6000 

Normalized Sample 3 

-~~-;---=-~· 
0 1000 2000 3000 4000 5000 6000 

Normalized Sample 4 

-~~ . . ~ 
0 1000 2000 3000 4000 5000 6000 

Figure 2. Normalized I-minute window samples with breaths marked by 

peak detection algorithm. 

Four clinically observable features were selected from 

the Rl waveform: the stability of the peak-to-peak time, the 

stability of the heights of peaks, the presence oflong pauses, 

and flat-lining. The stability of the peak-to-peak time is a 

measure of how consistent the breath times are. The value 

ranges between 0 and 100, with higher numbers representing 

a more stable peak-to-peak time. The stability of the heights 

of the peaks is a measure of how consistent the amplitude of 

breaths is. The presence of long pauses feature is included 

to detect instances where the breathing is very slow. The 

flat lining indication is a very strong indication of apnoea as 

it represents no effort in breathing. In this study, we try to 

determine how accurate we can build a classifier based on 

this modest feature set. 

C. kNN Classification 

A classification system takes a sample set of features and 

assigns the sample a label representing which class it 

believes the sample belongs to. The k-Nearest-Neighbour 

(kNN) algorithm is a very popular approach due to its simple 

nature and relatively robust performance. It is described as a 

lazy learning algorithm where there is a minimal training 

phase but costly test phase. This is because in the worst 

case, every training sample might contribute to the decision. 

kNN is a nonparametric classification technique, which 

means it makes no assumptions on the underlying data 

distribution. This is useful when dealing with real world 

parameters. It classifies objects based on the closest 

examples (neighbours) from the training set. The closeness 

is calculated as the Euclidean distance between the test and 

training samples in the feature space. The label that 

comprises the majority of the k nearest training samples is 

assigned to the test sample. 

We experimented with several k values and found that 

k=44 results in the optimal performance. Different distance 

functions were also evaluated before deciding on using 

inverse Euclidean distance weighted average, in which the 

class of each of the k nearest points is multiplied by a weight 

proportional to the inverse of the distance between that point 

and the test point. Since we only had 8 records with a 

respiratory effort signal, a simple 66% split of the data into 

training and test sets would result in poor training of the 

classifier. To improve the performance of the classifier, 10-

fold cross-validation is applied. This technique involves 

dividing the full set into 10 approximately balanced subsets. 

Then, the kNN algorithm is applied in 10 iterations using the 

subset as the training set and the rest of the samples as the 

test set. The 10-fold cross-validated accuracy is calculated 

as the average of the 10 resulting accuracies. To implement 

the kNN algorithm, we used the open-source machine 

learning software known as WEKA. This Java based 

software is widely used by many researchers and scientists. 

IV. RESULTS AND DISCUSSION 

A total of 3,947 epochs were processed by the kNN 

classifier. The accuracy, defined as the percentage of correct 

classifications was found to be 91.2%. The specificity was 

88.1% and the sensitivity was 95.7%. We also performed 

receiver operator characteristic (ROC) analysis. The ROC 

curve is generated by plotting the true positive rate against 

the false positive rate and is shown in Fig. 3. The area under 

the ROC curve (AROC) is often used as a measure of the 

performance of a classifier. The area measures 

discrimination, which represents the ability to correctly 

classify a randomly chosen pair of apnoeic and non-apnoeic 

samples. The AROC of the kNN classifier was 0.9604. 

While the results of this study are promising, it is 

important to note that the size of the sample set was very 

small. We made the most of the annotated data by not 

simply splitting it into training and test but rather use k-fold 

cross-validation with 10 folds. It was a goal of the study to 

determine whether high detection accuracy could be 

achieved using only the respiratory impedance waveform. If 
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combined with some ECG analysis, the resulting accuracy 

could be boosted even more. 

 
Figure 3.   ROC curve for performance of algorithm. 

Also, it was discovered that the value for the k parameter 

in the kNN classification algorithm can have a large impact 

on the accuracy of the system.  Originally, small values of k 

(less than ten) were used but it was found that the 

classification was susceptible to noisy samples and the 

accuracy suffered.  Generally, a small k value means that 

noise will have a greater influence on the classification.  But 

simply choosing a very large value of k makes the 

classification computationally expensive.  One method to 

choose a k value is to take the square root of the number of 

samples.  Our optimal value of k=44 falls under the square 

root of the 3,947 samples so it was sufficiently robust to 

noise and also offers reasonable computational cost. 

V. CONCLUSION AND FUTURE WORK 

This paper presents a system for the automatic detection 

of sleep apnoea using k-Nearest-Neighbour (kNN) 

classification of clinically recognizable features.  We report 

our analysis of using this approach compared to the manual 

annotation by human experts using multiple physiological 

data streams.  Our results show that it is possible to 

accurately detect apnoea from only the RI waveform and 

clinically recognizable features using the algorithms 

presented here.  This enables a very feasible alternative to 

polysomnography and diagnosis of sleep apnoea can be 

made without the use of expensive machinery or specialised 

personnel.  This can drastically reduce the number of 

patients with sleep apnoea that go undiagnosed.   

In future work we will perform a study on a larger data 

set to further validate the feature set used to detect apnoeic 

episodes.  While high specificity and sensitivity are the main 

goals of designing an apnoea detection algorithm, we are 

also working on a novel way to present classification results 

to physicians.  Due to the clinically observable nature of the 

feature set, any classification can be easily deconstructed 

into traceable steps and checks.  These checks will be part of 

the report presented to physicians at the end of the test.   
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