
  

  

Abstract—Isokinetic exercises have been extensively used in 
order to analyze muscle imbalances and changes associated 
with fatigue. It is known that such changes are difficult to 
assess from EMG signals during dynamic contractions, 
especially, using linear signal processing tools. The aim of this 
work was to use nonlinear prediction in order to analyze 
muscle couplings and interactions in this context and to assess 
the load-sharing of different muscles during fatigue.  Results 
show promising for detecting interaction strategies between 
muscles and even for the interaction between muscles and the 
output torque during endurance tests. 
 

I. INTRODUCTION 

Low-effort repetitive contractions have been associated to 
upper limb disorders such as lateral epicondylitis in different 
studies in the literature [1, 2]. Isokinetic exercise has been 
extensively used in order to analyze muscle imbalances and 
changes associated with muscle fatigue [1, 2], specifically, by 
studying the exerted torque and its agonist-antagonist ratio. 
However, changes at neuromuscular level can be better 
described by the analysis of electromyographic signals 
(EMG) which reflect the one-to-one relationship between the 
activation of motor units and the neural code being 
transferred from the motor cortex to the muscles. 

When referring to fatigue assessment in isometric- 
contractions, there is a large amount of evidence of changes 
in features extracted from EMG (e.g. mean frequency of the 
power spectrum, signal amplitude, etc) using linear 
processing techniques. Additionally, there is evidence of 
time-variations in the co –activation pattern (load-sharing) of 
synergistic muscles during both, isometric and dynamic 
fatiguing contractions [3, 4]. 

However, the EMG signal cannot be considered as wide 
sense stationary when involving joint movement or changes 
in the length of the muscle fibers [3] and therefore results 
obtained by linear methods in dynamic contractions are not 
consistent [5].  In this condition, the nature of the signal is 
influenced by various confounding factors, affecting the 
estimation of EMG features [5]. On the other hand, recent 
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studies support the use of nonlinear techniques for detecting 
changes in surface EMG (sEMG) during fatigue [6]. 
Particularly, our group has successfully applied nonlinear 
prediction based on locally-linear models to study muscle 
couplings and interactions between respiratory muscles [5]. 
Assuming that EMG data are associated with an underlying 
nonlinear dynamical system, it is possible to evaluate 
correlations between muscles using a simple nonlinear 
prediction algorithm as described in [7]. 

The purpose of this study was to evaluate the information 
that can be extracted from nonlinear prediction and associate 
it with muscle coupling (load- sharing) during fatiguing 
dynamic contractions of the wrist. 

sEMG signals recorded in isokinetic condition from four 
muscles were studied: Extensor Carpi Radialis (ECR), 
Extensor Carpi Ulnaris (ECU), Extensor Digitorum 
Communis (EDC) and Flexor Carpi Radialis (FCR). 
Different preliminary analyses were performed in order to 
characterize their coordination and also the coupling between 
muscles and output torque. Although results showed different 
interaction strategies for different subjects, it was possible to 
observe fatigue-related changes in such interactions. Future 
work will comprise the application of the technique in the 
assessment of lateral epicondylitis. 

II. METHODOLOGY 

A. Experimental recording 
The experimental protocol was approved by the Local 

Ethics Committee and participants gave their written 
informed consent.  

Four healthy male subjects (age, mean ± standard 
deviation: 30.8 ± 4.35 years; height: 181.3 ± 3.4cm; weight: 
79.3±12 kg) with no history of musculoskeletal and/or 
neuromuscular disorders of the upper extremity participated 
in the experiment. 

Single differential sEMG signals were recorded in four 
muscles: ECR, ECU, EDC and FCR by means of linear 
arrays of 8 electrodes (Ag-AgCl, IED 0.5 cm, LISiN- 
SpesMedica) connected to two sEMG amplifiers with 
synchronized sampling (LISIN/OT Bioelettronica 16 
channels, sampling frequency= 2048 Hz). Electrode arrays 
were used in order to decide the best location for the 
recording of the signals, that is, away from innervation zones 
and tendons. For the rest of the analysis, one single-
differential channel was chosen on the basis of high cross-
correlation coefficient with neighboring channels (>0.7) and 
where it was possible to observe propagation of motor unit 
action potentials with conduction velocity ranging in the 
expected physiological values as described in [8]. 
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Subjects performed a series of isokinetic contractions at 
the wrist up to exhaustion in order to assess muscular fatigue. 
An isokinetic dynamometer in concentric mode was used for 
this purpose (Biodex System III; Biodex Medical Systems, 
Shirley, NY). Subjects were seated with the back straight, the 
forearm supported and in full pronation and the elbow flexed 
at 60º. The joint axis of the wrist was aligned with the 
rotational axis of the dynamometer. The velocity of the 
device was set to 60º/s in wrist extension and 180º/s in wrist 
flexion in order to emphasize the role of the wrist extensor 
muscles which are commonly associated with upper limb 
disorders such as lateral epicondylitis [9]. The range of 
motion was 70º (30º in dorsal flexion and 40º in palmar 
flexion measured from the neutral position of the wrist). 

 The exerted torque was measured over the entire range 
of motion and its output signal was simultaneously sampled 
at 100 Hz and digitalized for offline analysis. 

B. Data preprocessing 
The EMG signals were pre-filtered between 20 and 350 

Hz with a 4th order Butterworth filter for reducing motion 
artifacts and to remove the baseline. Then, the signals were 
demodulated, that is, full-wave rectified and filtered by 
means of a 400 ms moving average window [7, 10]. This 
demodulation integrated the contributions of all motor units, 
obtaining a signal related to the whole muscle action [11]. 
The resulting demodulated EMG signals and the torque 
signal were resampled to obtain a final sampling frequency of 
20 Hz [7]. Signals were also normalized by subtracting the 
mean and then dividing over their standard deviation to have 
zero mean and unit variance, so that subsequent analysis of 
their dynamics was independent from their amplitudes (see 
Fig. 1).  The normalization avoided the effect of the relative 
electrode- muscle distance on amplitude of the signal. 

The zero-crossings of the torque signal were used to 
calculate the duration of the duty cycle, given that some 
variation in the velocity of the exercise can be expected.   

C. Nonlinear prediction 
Nonlinear prediction was carried out by means of locally 

linear models, which in turn were based on the reconstruction 
of the “state of the system” obtained by lag embedding [12]. 
The Taken’s theorem was applied to the demodulated EMG 
and torque signals, with the embedding dimension (ED) set to 
4 and the delay time between samples (DT) set to ¼ of the 
total duration of 1 duty cycle (~ 2 s). Hence, the embedding 
process of a single signal results in an ED-dimensional time 
series that follows the equation: 

z𝒕 = (𝑥𝑡 , 𝑥𝑡−𝐷𝑇, … , 𝑥𝑡−(ED−1)DT)�𝑡=1,..,𝑀     (1) 

where xt represents a sample at time t and M zt points in the 
ED-dimensional space were obtained, depending on the total 
duration of the signal (M is limited to M=N-DT*(ED-1)). 

Thus, the 4-dimensional series of a signal was used to 
model its dynamics, and its model was in turn employed to 
predict other epochs of the same signal (auto-prediction) or 
of a different signal (cross-prediction), taking into account a 
range of prediction horizons (PH) up to 10 s. 

In theory, it should be possible to predict the future value 
of a point in the embedded space just by looking at the future 
value of its closest neighbor, but in practice some more 
points have to be considered. In this work 3·ED = 12 nearest 
neighbors were used to obtain sensible prediction values. 
Solving the linear system that maps some neighbors to their 
future counterparts a nonlinear regression model, which can 
be understood as the linearization of a global nonlinear 
dynamics at the considered points in the embedded space, 
could be implemented. 

Nonlinear prediction was assessed in the following cases: 
• EMG auto-prediction for the four selected muscles 

(ECR, EDC, ECU and FCR). 
• EMG-EMG cross-prediction. In this case, the 

demodulated EMG signal from the ECR was used to 
predict the signals of the other muscles, because it has 
been associated with forearm disorders [1, 2] 

• EMG-Torque cross-prediction. The demodulated signal 
of each muscle was used to predict the output torque. 

For each PH, the prediction model was estimated M times 
following a leaving-one-out approach and the goodness of the 
prediction was evaluated by the R2 coefficient. For details on 
the actual prediction algorithm, please refer to [7]. The values 
used for the parameters of the models and in the pre-
processing of the signals were also chosen according to [7]. 

From the trends of R2 as function of PH, three variables 
were obtained: 1.The slope of the linear regression of R2, and 
its regression coefficient r, 2. The value of R2 at the minimum 
PH (Ro), and 3. The value of R2 at the maximum PH (Rf). 

III. RESULTS 

A. Auto-prediction 
The auto-prediction model using the whole signal 

(corresponding to the entire duration of the endurance test) 
revealed an important decrease of R2 with increasing PH. An 
example of the obtained results for one subject can be 
observed in Fig. 2 (left). The decrease of the R2 coefficient 
was lower for ECU when compared with the other muscles,  

 
Figure 1. Example of demodulated and normalized EMG signals and torque obtained from subject 3. 
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as can be inferred from the slope of the linear regression of 
R2 and from the Rf value at a PH = 10 s (see Table I). 

B.  Cross-prediction 
R2 also showed a sensitive decrease with increasing PH 

for the ECR EMG pairs using the entire duration of the test 
(see Fig.2 right as an example). In general, similar couplings 
between ECR and the rest of the muscles were observed from 
the slope and the initial (Ro) and final (Rf) values of R2 in 
Table II. Note that the ECR-ECU presented the lower initial 
values Ro when compared to the rest and this result was 
consistent for all of the subjects (see Table II). 

Additionally, decreasing R2 values with increasing 
prediction horizon were obtained for the prediction of the 
developed torque from each muscle. The variables extracted 
from R2 as function of PH and for the four subjects are 
presented in Table III. Note that the steepest decrease was 
obtained for the FCR in three of the four subjects.  

In order to obtain information about possible changes in 
the performance during the endurance test, the prediction was 
calculated by using a 15 cycles-epoch at the beginning, the 
middle and the end of the exercise. This analysis revealed 
that the prediction deteriorate (lower R2 values) at the middle 
and final stages of the exercise. This behavior was globally 
consistent for the three pairs of muscles and similar for the 
four subjects. An example is given in Fig. 3, where it is 
possible to observe a very good prediction during the first 15 
cycles even for PH = 10 s, (R2>0.9, Fig. 3, top left), followed 
by a slow decay in the middle of the test (Fig. 3, center left) 
and a dramatic decay at the end, reaching R2 values close to 
0.5 for PH = 10s for all pairs of muscles (Fig. 3, bottom left). 
Similar results were obtained for the cross-prediction 
between EMG and isokinetic torque. An example for the 
same subject is presented in the right column of Fig. 3. 

Based on these findings, a more detailed analysis was 
carried out with the purpose of evaluating the instant where 

 

the forecasting gets worse during the test. R2 at PH = 4 s (~ 2 
cycles) was calculated using a 15-cycles sliding window. 
Since each subject performed a different number of cycles 
and given that Ro can be different for different muscles, R2 
was normalized with respect to Ro and the traces were 
analyzed as function of the relative total duration time (TDT, 
0 to 100% of the number of cycles). Coupling patterns 
between ECR and the other muscles for the four subjects are 
shown in Fig. 4. Although each subject presented different 
strategies for the activation of these muscles, it was possible 
to observe steep decreases in R2 beyond 60% of the total 
number of cycles in more or less extent depending on the 
subject. Such changes were also observed from the cross-
prediction EMG-torque models (Fig 4. bottom) though not as 
clear as in the case of EMG-EMG pairs. 

Therefore worsening in the prediction could be partially 
attributed to changes in the coupling between ECR and the 
rest of the muscles. Finally, it was possible to notice that the 
R2 coefficient for the pair FCR-torque was not as good as that 
obtained for the extensor muscles, but this could be related to 
the high velocity of the wrist flexion that caused a lower 
activation of the flexor muscles with respect to the extensors.  

IV. DISCUSSION AND CONCLUSIONS 

Nonlinear prediction models were successfully applied to 
the analysis of coupling between muscles and between 
muscles and output torque. The R2 coefficient was very high 
(R2 > 0.8 in most of the cases) for short prediction horizons 
when analyzing the entire duration of the exercise. 

When the interactions at different stages of the test were 
considered (Fig. 3), the prediction of the models degraded at 
the final stage of the exercise when the effects of the 
myoelectric fatigue were more evident. This finding was 
consistent for the four subjects in the study and suggests a 
high coordination of muscles in early stages of the test that 

 
Figure 2.  R2 coefficient as function of the prediction horizon for EMG 

auto-prediction (left) and EMG-EMG cross-prediction (right) in subject 3 
 

 
TABLE I. VARIABLES OBTAINED FROM R2 AS FUNCTION OF THE 

PREDICTION HORIZON (PH) FOR THE AUTO-PREDICTION. THE SLOPE, THE 
COEFFICIENT OF THE LINEAR REGRESSION (r) AND THE VALUES AT 

MINIMUM (RO) AND MAXIMUM (Rf) PH ARE PRESENTED 
Slope,  r 
 [Ro, Rf] 

S1 S2 S3  S4 

ECR -0.026, 0.86 
[0.99, 0.54] 

-0.074, 0.97 
[0.99, 0.33] 

-0.041, 0.89 
[0.99, 0.37] 

-0.04, 0.97 
[0.99, 0.58] 

EDC -0.044, 0.93 
[0.99, 0.26] 

-0.033, 0.91 
[0.99, 0.57] 

-0.046, 0.93 
[0.99, 0.4] 

-0.055, 0.96 
[0.99, 0.44] 

ECU -0.014, 0.7 
[0.99, 0.67] 

-0.021, 0.9 
[0.98, 0.66] 

-0.019, 0.86 
[0.99, 0.66] 

-0.035, 0.94 
[0.98, 0.53] 

FCR -0.077, 0.86 
[0.98, 0] 

-0.081, 0.92 
[0.98, 0] 

-0.041, 0.93 
[0.99, 0.45] 

-0.095, 0.99 
[0.99, 0] 

 

 
Figure 3.   R2 (PH) for the EMG-EMG (left ) and EMG-Torque (rigth) 

cross-prediction in subject 3. The R2 was obtained from the first 15 cycles 
(top), the 15 intermediate cycles (middle) and the final 15 cycles (bottom) 

of the test. Different pairs of signals are indicated by different colors. 
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degrades as the exercise progresses in time as consequence 
of myoelectric fatigue. 

Furthermore, the analysis with a sliding window of 15 
cycles (Fig. 4) allowed an evaluation with better temporal 
resolution, showing that the prediction worsened after 60% 
of the total duration of the test (for both the EMG-EMG and 
EMG-torque cross-prediction models), and in some cases 
with dramatic changes in the prediction, even when the 
exercise was performed at the target velocity and no visual 
changes could be observed in the signals (see Fig. 1). This 
effect could be related to changes in the load sharing of the 
muscles during myoelectric fatigue and shows that there is 
no unique strategy of muscular coordination for all subjects, 
but each strategy can be detected by means of nonlinear 
prediction. With this respect, Roy et al. in [4] suggested 
possible variations in the load sharing of the muscles based 
on changes on the instantaneous median frequency within 
the overall duration of a cyclical lifting exercise. Such 
variations were hypothesized to correspond to a strategy of 
the neuromuscular system to avoid fatigue in a single 
muscle. In contrast, results presented in this study allowed 
exploring the interaction between muscles from the 
amplitude of the sEMG signals itself, which is directly 

 

 
related to the modulation of the active motor units [13]. The 
presented results showed that nonlinear prediction is a 
promising technique for the assessment of myoelectric 
fatigue during dynamic contractions. Future research will 
comprise the use of a bigger database and the inclusion of 
patients with lateral epicondylitis in order to obtain a better 
insight in the reasons of changes in the prediction 
performance and to analyze its eventual application in 
clinical settings. 
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TABLE II. VARIABLES OBTAINED FROM R2 AS FUNCTION OF THE 
PREDICTION HORIZON (PH) FOR THE EMG-EMG CROSS-PREDICTION. THE 
SLOPE, THE COEFFICIENT OF THE LINEAR REGRESSION (r) AND THE VALUES 

AT MINIMUM (RO) AND MAXIMUM (Rf) PH ARE PRESENTED. 
Slope,  r 
[Ro, Rf] 

S1 S2 S3 S4 

ECR-EDC -0.022, 0.91 
[0.89, 0.56] 

-0.052, 0.96 
[0.9, 0.44] 

-0.034, 0.89 
[0.89, 0.4] 

-0.033, 0.98 
[0.94, 0.66] 

ECR-ECU -0.009, 0.51 
[0.73, 0.55] 

-0.043, 0.97 
[0.84, 0.42] 

-0.024, 0.88 
[0.8, 0.45] 

-0.029, 0.97 
[0.9, 0.64] 

ECR-FCR -0.025, 0.88 
[0.81, 0.55] 

-0.061, 0.95 
[0.96, 0.39] 

-0.031, 0.93 
[0.86, 0.47] 

-0.032, 0.96 
[0.95, 0.66] 

 

 
Figure 4.  Normalized R2 at PH = 4 s (~2 cycles) as function of the starting 
point of a moving window of 15 cycles. The horizontal axis was normalized 

with respect to the total duration (TDT) time of the test. 

TABLE III. VARIABLES OBTAINED FROM R2 AS FUNCTION OF THE 
PREDICTION HORIZON (PH) FOR THE EMG-TORQUE CROSS-PREDICTION. 
THE SLOPE, THE COEFFICIENT OF THE LINEAR REGRESSION (r) AND THE 

VALUES AT MINIMUM (RO) AND MAXIMUM (Rf) PH ARE PRESENTED. 
Slope,  r 
 [Ro, Rf] 

S1 S2 S3  S4 

ECR-TOR -0.026, 0.9 
[0.83, 0.62] 

-0.058, 0.95 
[0.93, 0.43] 

-0.031, 0.92 
[0.89, 0.49] 

-0.027, 0.97 
[0.94, 0.71] 

EDC-TOR -0.031, 0.93 
[0.91, 0.57] 

-0.02, 0.95 
[0.95, 0.71] 

-0.036, 0.94 
[0.89, 0.6] 

-0.033, 0.93 
[0.94, 0.66] 

ECU-TOR 0.003, 0.36 
[0.72, 0.72] 

-0.021, 0.91 
[0.88, 0.63] 

-0.021, 0.9 
[0.93, 0.66] 

-0.03, 0.97 
[0.88, 0.62] 

FCR-TOR -0.078, 0.95 
[0.92, 0.13] 

-0.062, 0.95 
[0.89, 0.24] 

-0.035, 0.96 
[0.94, 0.61] 

-0.067, 0.99 
[0.88, 0.23] 
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