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Abstract— In this study, an experimental electronic neuron
based on Morris-Lecar model is presented, able to become
an experimental unit tool to study collective association of
robust coupled neurons. The circuit design is given according
to the ionic currents of this model. The experimental results
are compared to the theoretical prediction, leading to validate
this circuit.

I. INTRODUCTION

A key problem to study brain behavior is to understand

how the neurons represent and bind sensory information

converging to the brain from different channels. Neurons

exhibit and transmit electrical activity that researchers try

to model by different ways. While the most famous model

has been developed by Hodgkin and Huxley (HH) [1],

some of its derived models, as FitzHugh Nagumo (FHN)

[2], [3] or Morris-Lecar (ML) [4], [5], [6] ones, despite

their simplicity, give interesting results as different behaviors

appear according to tunable parameters. Nowadays, computer

simulation of large scale neural is more powerful, but they

are rarely able to work in real time, as the number of

equations to be solved can be important. When using analog

electronic circuits, the real-time calculation is possible. If

these circuits work in real time, we obtain an artificial neuron

able to reproduce the behavior of a real neuron [7], [8]. It is

easy to further accelerate the analog simulator performance

by dividing by given factor all kinetic parameters.

In the present work, we propose a complete electronic

implementation of ML model of type I, candidate to become

an experimental unit tool to study collective association

of robust coupled neurons. Experiments on this electrical

neuron can enlighten the robustness of the obtained behaviors

as it includes intrinsic and extrinsic noise. We present firstly

the equation set of ML model, then the circuit design.

Finally, we compare our experimental results with the various

theoretical predictions of this model.

II. THE MORRIS-LECAR MODEL

The Morris-Lecar model [4] of biological neuron was de-

veloped to reproduce the variety of oscillatory behaviors with

respect to the calcium Ca++ and potassium K+ conduc-

tances in the giant barnacle muscle fiber. The Morris-Lecar

model is a two-dimensional system of nonlinear differential
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equations:

Cm

dV

dt
= −gCaM∞(V ) · (V − VCa)− gKW · (V − VK)

− gL(V − VL) + Iapp, (1a)

dW

dt
=

W∞(V )−W

τW (V )
, (1b)

where

M∞(V ) =
1

2
+

1

2
tanh

(

V − V1

V2

)

(2)

W∞(V ) =
1

2
+

1

2
tanh

(

V − V3

V4

)

(3)

τW (V ) =
T0

cosh
(

V−V3

2V4

) (4)

V is the membrane voltage, Cm is the membrane capac-

itance and Iapp is the current applied to the neuron. ICa =
gCaM∞(V ).(V − VCa), IK = gKW.(V − VK) and IL =
gL(V − VL) are the calcium, potassium and leak currents

respectively in µA/cm2, wherein W represents the recovery

variable. The calcium Ca++ activates the membrane and

the potassium K+ depolarizes this membrane. gCa, gK and

gL are conductances for Ca++, K+, and leak ion channel

respectively. VCa, VK and VL are equilibrium potentials

corresponding to the currents. V1, V2, V3 and V4 are setting

parameters for steady states. The values of the different

parameters of type I are listed in Table I [6]. This model

presents both neurons Class I and Class II. Class I neurons

begin repetitive discharges with a frequency close to zero. On

the other hand, class II neurons begin repetitive discharges

with a finite frequency.

To generate a response, the membrane must be excited

above a certain threshold. Below this threshold, the neuron

rapidly returns to its equilibrium position. On the other hand,

if the excitation exceeds the threshold, then the neuron sends

a response to this stimulation as a train of some oscillations.

The Morris-Lecar model shows the relationship that links

membrane voltage and activation of ion channels.

III. ELECTRONIC CIRCUIT

To simplify the design of the circuit, we decompose it

into several parts (ionic currents) and realize each part with

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 5001



TABLE I

FIXED PARAMETERS FOR THE M-L MODEL[6]

Parameter Value Parameter Value

Cm 20 (µF/cm2) gCa 4 (mS/cm2)

gK 8 (mS/cm2) T0 15 (ms)

gL 2 (mS/cm2) V1 - 1.2 (mV )

VCa 120 (mV ) V2 - 18 (mV )

VK - 80 (mV ) V3 12 (mV )

VL - 60 (mV ) V4 17.4 (mV )

discrete and active components (see Fig. 1) according to:

Cm

dV

dt
= −ICa − IK − IL + Iapp (5)

where

ICa = gCaM∞(V ) · (V − VCa)

IK = gKW (V − VK)

IL = gL(V − VL)
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Fig. 1. Equivalent circuit for the M-L model

A. The calcium current

To build the current ICa (see block A, Fig. 4), we use 2

Operational Transconductance Amplifiers (OTA) LM13700

[9], whose gain can be controlled via either bias current or

diode current. To obtain the slope of the sigmoid function

M∞(V ) according to eq (2), we amplify a OTA 1 entry

tension with an operational amplifier (OA) UA741. With the

OTA 2, we multiply both signals gCaM∞(V ) and (V −VCa).
Fig 2(a) shows comparison of experimental and theoretical

results of the calcium current ICa.

B. The potassium current IK

To solve the problem of the differential equation (1b)

we build a circuit with a capacitance C1 and a nonlinear

resistance Rnl (see Fig 3).

From this circuit we can write:

C1

dW

dt
= Ia − Ib = Ia −

W

Rnl
dW

dt
=

1

C1

(

Ia −
W

Rnl

)

=
1

C1Rnl
(Ia ·Rnl −W )

����� ����� � ���� ����
����

���

����

���

����

���

	
��

�
�
�
�
��
��
�
��

�
�

����� ����� � ���� ����

�

����

���

����

	
��


 �

�
�
�

���� ����� � ���� ���
�

���

���

���

���

	
��

�

 �
�

�
�
�

������������

 !�"�#

	
��

�
�

�

�
�
�

���� ����� � ���� ���
�����

�����

�����

�����

����

���

��� ���

��� ���

Fig. 2. (a), (b) and (d) shows comparison of experimental (solid line) and
theoretical (+) results of ICa, Ia and leak current respectively. (c) shows
the catenary cuve.
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Fig. 3. Capacitance C1 and a nonlinear resistance (Rnl)

⇒

{

τW (V ) = C1Rnl

W∞(V ) = Ia ·Rnl
⇒















Rnl =
τW (V )

C1

Ia =
W∞(V )

Rnl

⇒



















Rnl =
T0

C1 cosh
(

V−V3

2V4

)

Ia =
C1

2T0

[

1 + tanh

(

V − V3

V4

)]

cosh

(

V − V3

2V4

)

(6)

From the previous circuit, we can write:

Ib =
W

Rnl

We can notice that in block B2 (see Fig. 4), the nonlinear

resistance is function of the membrane voltage V. Now we

build the different circuits giving Ia and Ib currents and the

catenary voltage. We put: C1 = 1µF.

1) Current Ia: it is given by block B1 in Fig. 4, which is

composed by an OTA, an OA and current sources. Fig 2(b)

shows comparison of experimental and theoretical results of

Ia current.
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Fig. 4. Global circuit where Ii to Is are bias currents, lg to !15 are offset currents and !15 to !21 are diode currents. 

2) Catenary curve 1000/ Rnl: it is obtained by adding 
output currents of 2 OTAs, with inverted inputs, as shown in 
block B 2 . Fig 2( c) shows comparison of experimental and 
theoretical results of catenary. 

3) Current h: it is produced with an analog multiplier 
(AD633) and a voltage-current converter (see block B 3 ). 

4) Current h: To complete the production of h current, 
we use an OTA for the voltage 500gK(V - VK) and a 
multiplier by W. Finally another OTA is used as a voltage­
current converter and negative multiplier by (-50) as shown 
in block B 4 (see Fig. 4). 

C. The leak current h = gL(V - VL) 

Only one OTA, restricted to its linear zone, is enough to 
give h (see block C, Fig. 4). Fig 2(d) shows comparison of 
experimental and theoretical results of leak current. 

IV. TEST OF THE GLOBAL ELECTRONIC CIRCUIT 

To test the neuron circuit build sketched in Fig. 4, initial 
conditions Vin and Win are required: we used the switcher 
MC l 4066BCP and reversers with OA, and compare these 
experimental results with numerical simulations of the com­
plete model ML (using a 4th order Runge-Kutta scheme). 
Fig. 5 shows the different areas of bifurcation of codimension 
2 (CmJapp)- With this circuit, we have managed to clearly 
distinguish between the different areas of bifurcation. Now, 
we give some examples of neuron behaviors. In region 1, 
there is a single equilibrium point, which is illustrated in 

Fig. 6, where (a), (b) and (c) correspond to the experimental 
results of membrane potential, recovery variable and phase 
plane respectively. Theoretical nullclines (dashed lines) are 
placed in ( c ), we compare the phase plane obtained with the 
numerical simulation which is shown in (c). Arrows indicate 
directions of trajectories. In region 9 of Fig. 5, we found a 
stable cycle, which leads to the behaviors of Fig. 7. Finally, 
in region 7 of Fig. 5, no cycles exist (see Fig. 8). We find 
different behaviors for other regions, but we do not draw the 
border that separates the region 4 and 5 because they are 
very thin. 

:&:; 90 
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J 75 Theory 
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Fig. 5. bifurcation diagram of codimension 2 (Crn, Iapp) 
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Fig. 6. region 1: Cm = 60µF ; Iapp = −20µA with Vin = −10mV
and Win = −96mV . (a): membrane potential versus time; (b): recovery
variable versus time; (c): experimental phase plane and (d): theoretical
phase plane.
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Fig. 7. region 9: Cm = 20µF ; Iapp = 70µA with Vin = −10mV and
Win = −96mV

V. CONCLUSION

It is worthwhile to remark that in our implementation

of ML electronic neuron, τW (V ) is indeed fonction of V

according to Eq. (4) which improves the circuit given in

[5]. Moreover, with OTA technology, switching to micro-

electronics is easy. This circuit can become an experimental

unit tool to study the robustness of collective dynamics of

small size neuronal networks. The large-scale simulation of

the neuron behaviors takes too much calculation time, but

with electronic neurons, the real time results can be obtained.

The next stage will be to couple a sufficient number of such

neurons to obtain the Anti-phase spiking patterns in order
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Fig. 8. region 7: Cm = 60µF ; Iapp = 90µA with Vin = −40mV and
Win = 300mV

to understand the anti-phase synchronization in biological

systems.
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