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Abstract—In the present paper, we apply a computer-aided
phase reduction approach to dynamical system design for silicon
neurons (SiNs). Firstly, we briefly review the dynamical system
design for SiNs. Secondly, we summarize the phase response
properties of circuit models of previous SiNs to clarify design
criteria in our approach. From a viewpoint of the phase reduction
theory, as a case study, we show how to tune circuit parameters
of the resonate-and-fire neuron (RFN) circuit as a hybrid type
SiN. Finally, we demonstrate delay-induced synchronization in a
silicon spiking neural network that consists of the RFN circuits.

I. INTRODUCTION

In the field of neuromorphic engineering, silicon neurons

(SiNs) [1]-[13] are the most fundamental element constituting

neuromorphic systems for spike-based computation. Design

approaches for SiNs are based on three principles. The first

one is referred to as the phenomenological principle which

captures some of key behaviors and functions of neurons

at abstract level, leading to a compact circuitry [1]. The

second one is the conductance-based principle which emulates

the dynamics of ionic channels of excitable membranes to

reproduce a wide variety of behaviors and functions of neurons

at detailed level, and resulting circuits are complicated [6], [7].

Recently, in addition to these, the dynamical systems design

principle has been proposed as the third one [10]-[13].

The dynamical system design can be characterized by

the mathematical structures embedded in target circuits and

devices. From this point of view, we further classify the

dynamical system design approaches for nonlinear circuits

and devices into three categories: (i) the phase plane and

nullcline-based design [10]-[16], (ii) the potential-based design

[17]-[19] and (iii) the phase response curve (PRC)-based

design [20]. The distinct approaches provide us with different

perspectives. For instance, the phase plane and nullcline-based

design can tune the phase plane structure to reproduce complex

bifurcation phenomena [10].

In this work, we apply a computer-aided phase reduction

approach to dynamical system design for SiNs to enhance

synchronization in an ensemble of SiNs. We clarify key criteria

to optimize the design of SiNs in terms of phase response

properties through analyzing various circuit models of the

previous SiNs [8]-[12]. In accordance with the criteria, we

show how to tune circuit parameters of a resonate-and-fire

neuron (RFN) circuit [4] as a hybrid type of SiNs to obtain

a desirable PRC. Furthermore, we demonstrate that the PRC

of the circuit plays an important role for synchronization in a

recurrent network of the RFN circuits with transmission delay.

II. DYNAMICAL SYSTEM DESIGN FOR SILICON NEURONS

Let us briefly review dynamical system design for nonlinear

circuits and devices including SiNs as shown in Table 1.

A. Phase Plane and Nullcline-based Design

The phase plane and nullcline-based design for SiNs has

been firstly established as the mathematical structure-based

design [10]. In the design approach, the phase plan structure

of SiNs is mapped onto silicon by qualitative modeling of the

dynamics of ionic channels based on reduced system equations

with a few of state variables. By tuning nullclines on the phase

plane, one can control the bifurcation structure of the SiN,

reproducing the functional diversity of dynamical behaviors of

biological neurons, such as post-inhibitory rebound, bursting,

and chaos [10], [11]. Such systematic approach can achieve

the efficient SiN design. For instance, a biophysically-inspired

SiN circuitry [9] can be more sophisticated and be extend to

reproduce both Class I and Class II neural excitability [12].

The main advantage of the design approach is to allow us to

reproduce diverse dynamics of biological neurons in a compact

SiN circuitry than a conductance-based SiN circuitry.

B. Potential-based Design

The dynamical systems design based on potential of an SiN

has been recently proposed [17]. In the design approach, the

dynamics of an SiN are regarded as a motion of a particle on

the potential with active area, and the potential can be derived

from the dynamics systematically [17]. By controlling the

shape of the potential, one can tune the dynamics to reproduce

bursting phenomena [17].
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TABLE I
DYNAMICAL SYSTEM DESIGN FOR NONLINEAR CIRCUITS AND DEVICES INCLUDING SILICON NEURONSD

Design Approaches Target Devices and Circuits Main Features and Functions Refs.

Phase Plane and Nullcline-based Design
Reaction Diffusion Chips Tuning nullcline, Controlling bifurcation [16]
Silicon Neurons Tuning nullcline, Controlling bifurcation, [10]

Generating chaos, Reproducing adaptation
Tuning nullcline, Controlling bifurcation, [11]
Generating bursting, Reducing fluctuations
Tuning nullcline, Controlling bifurcation, [12]
Reproducing adaptation
Controlling bifurcation, Generating bursting, [13]
Reproducing adaptation

Potential-based Design
Silicon Neurons Controlling bifurcation, Generating bursting [17]
Stochastic Memory Cells Controlling bifurcation and state transition [18]
Stochastic Logic Gates Controlling bifurcation and state transition [19]

Phase Response Curve-based Design
Nonlinear Oscillator Circuits Enhancing synchronization [20]

C. Phase Response Curve-based Design

As an alternative, we consider a dynamical systems design

approach based on PRC for enhancing synchronization in an

ensemble of SiNs. In spite of the significance of PRCs on

synchronization phenomena, those of SiNs are rarely focused

on [13]. In the latter section, we describe the detail of our

design approach.

III. A COMPUTER-AIDED PHASE REDUCTION APPROACH

TO DYNAMICAL SYSTEM DESIGN FOR SILICON NEUONS

Let us explain the dynamical systems design based on the

phase reduction theory.

A. Phase Response Properties of Biological Neurons

We describe perspectives from the phase reduction theory

in computational neuroscience [21]. Two types of PRCs are

identified in biological neurons. One is the Type I PRC that has

almost all positive regions, which mean the phase advances in

response to perturbations. Another one is the Type II PRC that

has both positive and negative regions, which correspond to

the phase advances and delays, respectively. The classification

of PRCs is closely related to the classification of the neural

excitability, Class 1 and Class 2, associated with bifurcation

structure.

B. Phase Response Properties of Silicon Neurons

We summarize the phase response properties of various

types of SiNs to clarify the key design criteria from a view-

point of the phase reduction approach.

1) IFN Type SiNs: Firstly, we consider the phase response

properties of the IFN type SiNs. We begin by considering

the relationship between the IFN type neuron models and

their PRCs. The IFN type neuron models, such as the leaky

IFN model and the quadratic IFN model, have the one-

dimensional subthrehold membrane dynamics with a firing

threshold. Because of the saddle-node bifurcation, the IFN

models have the Type I PRCs. The shape of such PRCs are

determined by the nonlinearity corresponding to the positive

feedback, which is a key factor in the PRC-based design. In

fact, the distinct PRCs can be obtained from the different

nonlinearity in the IFN circuits [13]-[15].

2) Rate Type SiNs: We here consider the phase response

properties of the rate type SiNs. The rate type SiNs, such as

the Wilson-Cowan neuron circuit, exhibit the Hopf bifurcation.

Consequently, such SiNs have the Type II PRC.

3) Full Conductance-based Type SiNs: We consider the

phase response properties of the conductance-based type SiNs

[23], [24]. Since such conductance-based type SiNs have the

wide variety of the conductance dynamics emulating biological

ionic channels, the SiNs can have both Type I and Type II

PRCs.

4) Reduced Conductance-based Type SiNs: We consider

the phase response properties of the Morris-Lecar (ML) type

SiNs [8]-[12]. The dynamics of the ML neuron model can

be derived from the conductance-based neuron models of the

Hodykin-Huxley (HH) type by model reduction. As a result,

we can consider reduced dynamics with two or three state

variables. Depending on the bifurcation near the equilibrium

point, the reduced model can exhibit both the Type I and

Type II PRCs. In a similar way, the reduced conductance-

based type SiNs have both types of the PRCs depending on

the gradient of the positive and negative feedbacks.

5) Hybrid Type SiNs: We consider the phase response

properties of the hybrid type SiNs having both continuous

subthreshold membrane dynamics and discrete firing reset

mechanism. For the purpose, we compare the phase plane

dynamics and phase response properties of the Izhikevich

neuron model and the RFN model [21].

Figure 1 shows the phase plane portraits of the Izhikevich

model. Depending on the bifurcation near the equilibrium

point, the Izhikevich model can exhibit both the Type I and

Type II PRCs. In the case of the saddle-node bifurcation

(Fig. 1A), the Izhikevich model becomes an integrator having

the Type I PRC (Fig. 2A). In contrast, in the case of the

Hopf bifurcation (Fig. 1B), the Izhikevich model becomes a

resonator having the Type II PRC (Fig. 2B). By changing the

ratio of the time constants of the membrane dynamics (v) and

the recovery dynamics (w) or the location of the reset point

of the phase plane, the shape of the PRC can be modified.

Figure 3 shows the phase plane portraits of the RFN model.

Depending on the parameters, the model has a stable focus and
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Fig. 1. Phase plane portraits of the Izhikevich model near (A) the saddle-node
bifurcation point and (B) the Hopf bifurcation point.
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Fig. 2. PRC of the Izhikevich model. (A) Type I PRC and (B) Type II PRC.

exhibits damping subthreshold oscillation. After the grazing

bifurcation beyond a threshold, the RFN model fires a spike

and the state is reset to a certain reset point. The PRCs of

the RFN model depending on the location of the threshold

and the reset point. The region of the negative phase shift

corresponding to the Type II PRC becomes large with the

increasing the angle between the threshold point and the reset

point from the stable focus.

C. Design Criteria in View of Phase Reduction Approach

From the results, we clarify the criteria of the PRC-based

design for SiNs: (i) controlling the gradient of the positive and

negative feedbacks, (ii) tuning the ratio between the duration

of action potential and the repetitive firing period, and (iii)

setting the location of a reset point on the phase plane. In

practice, tuning the time constant of the circuit dynamics is

efficient for (i) and (ii). By tuning the phase plane structure,

(iii) can be achieved.

IV. RFN CIRCUIT AND ITS PRC-BASED DESIGN FOR

ENHANCING SYNCHRONIZATION

Let us show how to tune circuit parameters of the RFN

circuit as a hybrid type SiN [4] in accordance with the design

criteria. This is because the RFN circuit has the firing reset

mechanism corresponding to precipitous negative feedback

and exhibits the Class 2 excitability as a result of the grazing

bifurcation.

A. Dyncamics of the RFN Circuit

Figure 5 shows the schematic diagram of the RFN circuit
that consists of the membrane circuit, the threshold-and-fire
circuit, the excitatory and inhibitory synaptic circuits, and the
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Fig. 3. Phase plane portraits of the RFN model (A) in the case of an integrator
and (B) in the case of a resonator.
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Fig. 4. PRC of the RFN model. (A) Type I PRC and (B) Type II PRC.

delay-and-inverter circuit. The dynamics of the RFN circuit
are represented as:

C
dV

dt
= −gV + ÍV − Io exp(

κ2

κ+ 1

W

UT

) + I (1)

C
dW

dt
= Io exp(

κ2

κ+ 1

V

UT

)− ÍW (2)

where V and W represent the node voltages corresponding to

the fast membrane dynamics and slow recovery dynamics.

The current through the current-mirrors, ÍV and ÍW , are
represented as:

ÍV = αIV (1 +
V DD − V

VE,P

) (3)

ÍW = βIW (1 +
W

VE,N

) (4)

where IV and IW represents the bias currents, V DD the

power-supply voltage, and VE,N and VE,P the Early voltages

for the nMOS and pMOS FETs, respectively. The parameter

α and β are proportional constants determined by IV and IW .

B. PRCs of the RFN Circuit

We consider the phase response properties of the RFN
circuit. The PRCs of the RFN model as shown in Fig. 4 are
theoretically derived from the model dynamics as follows [23]:

Z(φ) ∝ exp(Tφ) sin(2π
T

To
(1− φ)) (5)

where φ represents the phase, T the repetitive firing period,

and To the maximum firing period inversely proportional to

the natural angular frequency of the RFN model.

By substituting the circuit parameters into Eq. 5, the PRC of

the RFN circuit can be obtained. The natural angular frequency

of the circuit can be calculated from the Jacobian near the

equilibrium voltages, which is determined by the slope factor,
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Fig. 5. Schematic diagram of the RFN circuit.
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Fig. 6. Phase plane portraits of the RFN circuit.

the thermal voltage, and IVo
and IWo

the equilibrium currents

of the circuit. Since the repetitive firing period of the circuit

can be determined by setting the location of the reset voltage

on the phase plane along the orbit, such as shown in Fig. 6,

the ratio of T/To can be changed. This indicates that the type

of the PRC can be tuned from the Type I to Type II.

C. Delay-induced Synchronization in the RFN Circuit Network

Through circuit simulations using SPICE, we investigate the

synchronization properties of an excitatory recurrent network

of the RFN circuits without self-feedback. We set the number

of the circuits, N = 5, and the circuit parameters to obtain

the Type II PRC. The device parameters were assumed to use

the TSMC 0.25-µm technology.

In the case of small transmission delays, the network can

exhibit an asynchronous state, as shown in Fig. 7A. In contrast,

in the case of relatively large transmission delays beyond a

certain value, the circuits can synchronize with each other in

in-phase at a steady state, i.e., a synchronous state, as shown

in Fig. 7B. The critical value for a synchronous state can

be calculated by the network linear stability analysis. The

results indicate that the Type II PRC can only compensate

the transmission delay for synchronization at network level.

V. CONCLUSION

In this study, we have applied a computer-aided phase

reduction approach to dynamical system design for SiNs. We

clarified the design criteria by considering the phase response

properties of previous SiNs. More specifically, we showed
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Fig. 7. Delay-induced Synchronization in the Network of the RFN Circuits.

how to tune the circuit parameters of the RFN circuit as a

hybrid type SiN to obtain desirable PRCs. Furthermore, we

demonstrated that the Type II PRC of the RFN circuit plays

an important role for synchronization in a network of the

RFN circuits with transmission delay. The results indicate the

significance of our approach in practical SiN design.
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