
A Customizable Stochastic State Point Process Filter (SSPPF) for

Neural Spiking Activity

Yao Xin, Will X.Y. Li, Biao Min, Yan Han, and Ray C.C. Cheung, Member, IEEE

Abstract— Stochastic State Point Process Filter (SSPPF) is
effective for adaptive signal processing. In particular, it has been
successfully applied to neural signal coding/decoding in recent
years. Recent work has proven its efficiency in non-parametric
coefficients tracking in modeling of mammal nervous system.
However, existing SSPPF has only been realized in commercial
software platforms which limit their computational capability.
In this paper, the first hardware architecture of SSPPF has been
designed and successfully implemented on field-programmable
gate array (FPGA), proving a more efficient means for co-
efficient tracking in a well-established generalized Laguerre-
Volterra model for mammalian hippocampal spiking activity
research. By exploring the intrinsic parallelism of the FPGA,
the proposed architecture is able to process matrices or vectors
with random size, and is efficiently scalable. Experimental result
shows its superior performance comparing to the software
implementation, while maintaining the numerical precision.
This architecture can also be potentially utilized in the future
hippocampal cognitive neural prosthesis design.

I. INTRODUCTION

Cognitive neural prosthesis design is an emerging topic

in neural engineering research. For long years, we have

been endeavoring to develop a silicon-based prosthetic de-

vice which can be implanted into the mammalian brain.

This device is expected to perform bi-directional com-

munications between the intact brain regions and bypass

the degenerated region [1]. A well-functioning mathemat-

ical model has to be established beforehand for effective

processing of neural signals. Both parametric and non-

parametric modeling techniques are explored [2], [3]. Due

to the low-level physical mechanisms involved and demand

for a prior postulation of model structure in parametric

modeling, we refer to non-parametric methods which are

more feasible for area-constrained implantable applications.

The generalized Laguerre-Volterra model (GLVM), is such

a rigorous and well-functioning mathematical model based

on the non-parametric modeling paradigm [4]. The GLVM,

upon its successful development, is first applied to prediction

of mammalian hippocampal CA1 neuronal spiking activity

based on detected CA3 spike trains—by which the expected

neuroprosthetic function can be achieved. The GLVM uses

a weighted sum of convolution products between model

inputs and the orthonormal Laguerre basis functions, passing

through a threshold trigger to generate the predicted model

outputs [4], [5].

Yao Xin, Will X.Y. Li, Biao Min and Ray C.C. Cheung are with the
Department of Electronic Engineering, City University of Hong Kong,
Hong Kong (e-mail: yaoxin2@student.cityu.edu.hk; xyli@ee.cityu.edu.hk;
biaominhk@gmail.com; r.cheung@cityu.edu.hk).

Yan Han is with the Department of Information Science and Electronic
Engineering, Zhejiang University, China (e-mail: hany@zju.edu.cn).

The prediction module of the generalized Laguerre-

Volterra (GLV) algorithm is straightforward to be implement-

ed on different platforms. However, Laguerre coefficients

have to be estimated beforehand using the recorded in-

put/output data; and this estimation function is oftentimes the

most computational intensive stage in the whole calculation

flow. The previous silicon-based implementations of the

GLVM [6], [7] are based on the single-input and single-

output (SISO) model, which serves as its most simplified

form. However, in real situation, a model output is oftentimes

affected by the spiking activity of multiple inputs. In 2011,

Li et al. successfully implemented the multi-input, multi-

output (MIMO) GLVM on the FPGA-based reconfigurable

platform, achieving a remarkable speedup in model coeffi-

cients estimation compared with traditional software-based

platforms [8]–[10]. However, the tracking method they had

adopted is the Steepest Decent Point Process Filter (SDPPF),

which is simple in mathematical representation but sacrifices

certain levels of accuracy compared to other well-established

methods such as the Stochastic State Point Process Filter

(SSPPF) or the Kalman Filter, thus being less effective.

The SSPPF was proposed by Eden et al. in 2004 [11] and

in 2009, Chan et al. [12] applied the algorithm to realize

the estimation function of the GLVM, which is proven to

be more effective than the SDPPF. A major improvement of

SSPPF over SDPPF is the introduction of adaptive learning

rate. In [8], only a constant learning rate is adopted, which

can simplify the iterative computation procedure. However,

brain activities of the behaving animals can be time-variant

and subject to stochastic variations such as environmental

changes. To be more realistic, the learning rate itself should

be updated adaptively using the firing probability calculated

in previous time ((9) of [8]) and the detected model output

in present time. The SSPPF algorithm has thus far been only

implemented in commercial software and run on a desktop

setup, resulting in certain limitation in calculation process.

Furthermore, there is no hardware architecture proposed for

this algorithm to date to meet potential demand of portable

and embedded platform for accurate coefficient estimation.

Although there is an efficient hardware implementation of

Kalman filter for neural ensemble decoding [13], it is only

suitable for small size matrix.

In our work, we overcome the limitations of previous

works and for the first time, implement the SSPPF on

FPGA-based reconfigurable platform for more efficient and

effective model coefficients estimation. Meanwhile, this new

estimation module is practical for applying to the general

framework of future cognitive prosthetic device.

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 4993

II. STOCHASTIC STATE POINT PROCESS FILTER

The general calculation flow applying the GLV algorithm

can be found in [4] and [5]. Different filtering techniques

can be adopted for GLV model coefficients tracking. The

SSPPF is proposed to adaptively estimate model parameters

in point process neural firing [11], which is defined as a linear

evolution process with Gaussian errors. The time-varying

parameter vector C(k) and its covariance matrix R(k) are

updated by following recursive equations:

R(k)−1 = [R(k−1)+Q]−1 +
[

(

∂ logP(k)

∂C(k)

)T

P(k)

(

∂ logP(k)

∂C(k)

)

− (y(k)−P(k))
∂2 logP(k)

∂C(k)∂C(k)T

]

,

(1)

C(k) =C(k−1)+R(k)
[

(

∂ logP(k)

∂C(k)

)T

(y(k)−P(k))
]

. (2)

where P(k) is the firing probability of spike firing, k

denotes discrete time bins, and y(k) represents the new output

information observed during the interval (k−1,k]. Applying

(1) and (2) to the generalized Laguerre-Volterra model [12],

the two equations can be rewritten into the below forms, as:

R(k) = [(R(k−1)+Q)−1 + k1MT M]−1
, (3)

C(k) =C(k−1)+ k2R(k)MT
. (4)

And k1 and k2 can be derived as follows:

k1 = α2P(k)+β[y(k)−P(k)], (5)

k2 = α[y(k)−P(k)], (6)

α =
1

√
2πP(k)

exp[−w(k)2], (7)

β =
w(k)
√

2πP(k)
exp[−w(k)2]+

1

2πP(k)2
exp[−2w(k)2]. (8)

The calculation methods for y(k), P(k), and w(k) are

identical to the ones introduced in [8], which hence will

not be elaborated here. Our architecture of SSPPF focuses

on the calculation stages expressed by (3) and (4), wherein

parallelism can be explored. A desktop computer is in charge

of the other parts of calculation, and communicates with the

FPGA in real time.

III. ARCHITECTURE DESIGN

The FPGA parallel architecture is built for the follow-

ing reasons: 1) Traditional CPU platforms do have certain

performance limitations. 2) Possible parallelism for accurate

coefficient estimation using SSPPF can be explored effi-

ciently. 3) We cannot exclude possible demand of potable

and embedded platforms for real-time parameter estimation.

4) The former architecture for parameter estimation is only

based on SDPPF, which compromises the accuracy.

Unlike most hardware designs [8], [13], the matrix size

can be arbitrary in our architecture and meanwhile, it can be

dynamically changed on the fly without pre-configuration.

The size is only limited by on-chip memory resource. This

architecture is also scalable in degree of parallelism, since

the computing units are capable of scaling up. The data in

our design is represented in single precision floating-point

format. Fig. 1 shows the overall architecture for SSPPF. The

Fig. 1. Overall architecture of Stochastic State Point Process Filter.

top layer module implements two sub-modules according

to major steps in SSPPF calculation: the computation of

k1MT M and k2R(k)MT are conducted in k1MTM k2RMT

module; the inversion of R(k) is performed by matrix in-

version module. Vectors and matrices involved are stored in

Block RAMs which are arranged to true dual-port mode.

The computing unit consists of four floating-point opera-

tors at the top and one matrix inversion module. The intrinsic

FPGA parallelism can be further explored by scaling up the

computing units in parallel, with data-width for operation

and storage increased accordingly. The parallel operations

are performed in horizontal sweep fashion.

The matrix inversion module is shown in Fig. 2, which is

based on the Gauss-Jordan elimination algorithm with partial

pivoting. Two sets of operators and RAMs are needed for

original and identity matrix simultaneously. The calculations

in normalization and elimination phase are fully pipelined

respectively. Major arithmetic operations include division,

multiplication and addition. To achieve efficient pivot loca-

tion, a comparator is set as the last node in the computing

pipeline, directly receiving data flow from adder outputs.

Pivot search is thus performed with only one extra clock

in general. The found pivot row address is output for next-

round row interchange when the elimination process is done.

In the k1MTM k2RMT module, the memory of vector

M together with floating-point operators is shared by two

different calculations, as shown in Fig. 3. We implement

only a few floating-point operators in this module, since the

corresponding computation is not the bottleneck affecting the

overall performance.

4994

Control

Row switch

Initial pivot

finder

addr_load

din_load

addr_read dout_read

matrix_size

addr

addra

din

dina

addrb

dinb

matrix RAM

matrix RAM

Elimination

ADDRA

WEA

ADDRB

WEB

DOA

DOB

Port A

36 Kb

Memor

y

Array

Port B

DINA

DINB

dina

addra

address bus data bus

addrb

ADDRA

WEA

ADDRB

WEB

DOA

DOB

Port A

36 Kb

Memor

y

Array

Port B

DINA

DINB

Pivot addr

Pivot addr

Fig. 2. Matrix inversion module.

Fig. 3. k1MTM k2RMT module.

IV. EXPERIMENTAL RESULTS

The architecture are synthesized, placed and routed in X-

ilinx Virtex-6 (XC6VLX240T-1) FPGA. Table I summarizes

the resources occupied by the whole architecture and the

main modules. We set the upper limit of matrix (vector) size

N to 256 under consideration of available on-chip memory.

Except for Block RAMs, the resource usage is rather small.

To verify the functionality of the SSPPF architecture, two

sets of synthetic experimental data are taken as the initial

input into the hardware. The vector C(k) size N is set to be 49

and 139 respectively, which accounts for the coefficients to

be estimated in a MISO model, and under certain conditions

: 1) second-order self kernel / cross kernel are applied, and

all kernels (besides the 0th) have 5 inputs, 2) number of

Laguerre basis functions L is set at 3 [5], [8]. Meanwhile, the

Laguerre coefficients estimation in Matlab version of SSPPF

algorithm is simulated as a reference. The estimated vector

C(k) of one iteration are showed in Fig. 4.

Analysis is also done to evaluate the error between our

adopted single precision and double precision floating-point

realization. The FPGA design is compared with Matlab real-

TABLE I

RESOURCE UTILIZATION OF ARCHITECTURE DESIGN

k1MTM k2RMT Matrix Inversion Overall Design

Slice LUTs 2344 (1%) 12068 (8%) 16667 (11%)

Slice Registers 2905 (1%) 14139 (4%) 19035 (6%)

RAMB36E1 57 (13%) 118 (28%) 176 (42%)

RAMB18E1 2 (1%) 1 (1%) 3(1%)

Max Frequency 261.575 MHz 220.653 MHz 208.247 MHz

0 5 10 15 20 25 30 35 40 45 50

0.15

0.2

0.25

Element in Vector C(k)

V
e

c
to

r
v
a

lu
e

1) Matlab simulation result

0 5 10 15 20 25 30 35 40 45 50

0.15

0.2

0.25

Element in Vector C(k)

V
e

c
to

r
v
a

lu
e

2) FPGA implementation result

(a) N = 49

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

5

6

7

8

x 10
−3

Element in Vector C(k)

V
e

c
to

r
v
a

lu
e

1) Matlab simulation result

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

5

6

7

8

x 10
−3

Element in Vector C(k)

V
e

c
to

r
v
a

lu
e

2) FPGA implementation result

(b) N = 139

Fig. 4. Filter result of FPGA implementation compared with Matlab
simulation.

ization with double precision. Input initial coefficient vector

and covariance matrix are randomly produced. We select

absolute maximum of k1 and k2 under certain conditions

to evaluate possible maximal error. 100 times of indepen-

dent experiments to update C(k) are done to calculate the

average maximal Mean Error (ME) and Mean Squared Error

(MSE) of FPGA implementation results for each iteration of

SSPPF update. The results are presented in Fig. 5. Although

maximal ME and MSE value both increase because of the

cumulated error with growing size N, our design maintains

the accuracy with MSE under 2×10−8.

For performance evaluation, the FPGA architecture is

compared with the software running on commercial CPU

platform. The software implementation of SSPPF algorithm

in C code has been compiled in Visual Studio 2010 and

4995

0 25 50 75 100 125 150 175 200 225 250
0

0.5

1

1.5
x 10

−4 1) Mean Error (ME)

0 25 50 75 100 125 150 175 200 225 250
0

0.5

1

1.5

2
x 10

−8 2) Mean Squared Error (MSE)

Fig. 5. Mean Error and Mean Squared Error of the FPGA results with
different matrix size N.

0

2

4

6

8

50 100 150 200 250

0

50

100

150

200

250

S
p

e
e

d
u

p

R
u

n
ti
m

e
 (

m
s
)

Matrix (Vector) size

 CPU runtime

 FPGA runtime

 Speedup

Fig. 6. Execution time comparison between hardware and software
platform, with different matrix size N.

executed on the platform of Intel Core i5-250M @ 2.50GHz

with 4GB RAM. Different datasets with coefficient number

ranging from 50 to 250 are executed in software. FPGA

architecture is driven by its possible maximal frequency

clock in this test. Fig. 6 shows the execution time com-

parison between two platforms with several different matrix

sizes. The FPGA-based hardware platform can achieve up

to 7 times speedup compared to the software platform in

calculation efficiency, as shown in Fig. 6. The speedup would

be much more significant with exploration of higher degree

of parallelism in future work.

V. CONCLUSIONS

The first Stochastic State Point Process Filter hardware

architecture is proposed and implemented on FPGA. The

architecture is capable of handling a wide dynamic range

of data, while processing arbitrary size of coefficient vector

without any pre-configurations. The upper bound of vector

size is only limited by on-chip memory resource. The

functionality of our architecture has been validated; error

analysis results show that the architecture can effectively

maintain numerical accuracy. Finally, the processing speed

is compared between the hardware-based platform and the

previous software-based platform. Experimental result indi-

cates that the hardware platform can achieve up to 7 times

speedup comparatively. In the future, the SSPPF comput-

ing architecture would be incorporated into our previously

established reconfigurable framework for more efficient and

accurate GLVM coefficients estimation.

REFERENCES

[1] T. W. Berger, D. Song, R. H. M. Chan, and V. Z. Marmarelis, “The
Neurobiological Basis of Cognition: Identification by Multi-Input,
Multioutput Nonlinear Dynamic Modeling,” Proceedings of the IEEE,
vol. 98, no. 3, pp. 356 –374, March 2010.

[2] “Brain in Silicon.”, Stanford University, USA. [Online]. Available:
http://brainsinsilicon.stanford.edu

[3] S. Hill and H. Markram, “The Blue Brain Project,” in Engineering

in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual

International Conference of the IEEE, Aug. 2008, p. clviii.
[4] D. Song, R. Chan, V. Marmarelis, R. Hampson, S. Deadwyler, and

T. Berger, “Nonlinear Dynamic Modeling of Spike Train Transfor-
mations for Hippocampal-Cortical Prostheses,” IEEE Transactions on

Biomedical Engineering, vol. 54, no. 6, pp. 1053 –1066, June 2007.
[5] D. Song, R. H. M. Chan, V. Z. Marmarelis, R. E. Hampson, S. A.

Deadwyler, and T. W. Berger, “Nonlinear modeling of neural popula-
tion dynamics for hippocampal prostheses,” Neural Networks, vol. 22,
pp. 1340–1351, 2009.

[6] T. Berger, A. Ahuja, S. Courellis, S. Deadwyler, G. Erinjippurath,
G. Gerhardt, G. Gholmieh, J. Granacki, R. Hampson, M. C. Hsaio,
J. LaCoss, V. Marmarelis, P. Nasiatka, V. Srinivasan, D. Song, A. Tan-
guay, and J. Wills, “Restoring lost cognitive function,” Engineering in

Medicine and Biology Magazine, IEEE, vol. 24, no. 5, pp. 30 – 44,
Sept.-Oct. 2005.

[7] M. C. Hsiao, C. H. Chan, V. Srinivasan, A. Ahuja, G. Erinjippurath,
T. Zanos, G. Gholmieh, D. Song, J. Wills, J. LaCoss, S. Courellis,
A. Tanguay, J. Granacki, V. Marmarelis, and T. Berger, “VLSI Im-
plementation of a Nonlinear Neuronal Model: A ”Neural Prosthesis”
to Restore Hippocampal Trisynaptic Dynamics,” in Engineering in

Medicine and Biology Society, 2006. EMBS ’06. 28th Annual Inter-

national Conference of the IEEE, 30 2006-Sept. 3 2006, pp. 4396
–4399.

[8] W. X. Y. Li, R. H. M. Chan, W. Zhang, R. C. C. Cheung, D. Song, and
T. W. Berger, “High-Performance and Scalable System Architecture
for the Real-Time Estimation of Generalized Laguerre-Volterra MIMO
Model From Neural Population Spiking Activity,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 4,
pp. 489 –501, Dec. 2011.

[9] W. Li, R. Chan, D. Song, T. Berger, and R. Cheung, “A dual mode fpga
design for the hippocampal prosthesis,” in Engineering in Medicine

and Biology Society (EMBC), 2012 Annual International Conference

of the IEEE, 28 2012-Sept. 1 2012, pp. 4579 –4582.
[10] R. Chan, D. Song, A. Goonawardena, S. Bough, J. Sesay, R. Hampson,

S. Deadwyler, and T. Berger, “Tracking the changes of hippocampal
population nonlinear dynamics in rats learning a memory-dependent
task,” in Engineering in Medicine and Biology Society, EMBC, 2011

Annual International Conference of the IEEE, Aug.30-Sept.3 2011,
pp. 3326 –3329.

[11] U. T. Eden, L. M. Frank, R. Barbieri, V. Solo, and E. N. Brown,
“Dynamic analysis of neural encoding by point process adaptive
filtering,” Neural Computation, vol. 16, no. 5, pp. 971–998, May 2004.

[12] R. Chan, D. Song, and T. Berger, “Nonstationary modeling of neural
population dynamics,” in Engineering in Medicine and Biology Soci-

ety, 2009. EMBC 2009. Annual International Conference of the IEEE,
Sept. 2009, pp. 4559 –4562.

[13] X. Zhu, R. Jiang, Y. Chen, S. Hu, and D. Wang, “FPGA implemen-
tation of Kalman filter for neural ensemble decoding of rat’s motor
cortex,” Neurocomputing, vol. 74, no. 17, pp. 2906 – 2913, 2011.

4996

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

