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Abstract— The dynamics of multijoint limbs often causes
complex dynamic interaction torques which are the inertial
effect of other joints motion. It is known that Cerebellum
takes important role in a motor learning by developing the
internal model. In this paper, we propose a novel computational
control paradigm in vertical reaching task which involves the
management of interaction torques and gravitational effect.
The obtained results demonstrate that the proposed method is
valid for acquiring motor synergy in the system with actuation
redundancy and resulted in the energy efficient solutions. It is
highlighted that the tacit learning in vertical reaching task can
bring computational adaptability and optimality with model-
free and cost-function-free approach differently from previous
studies.

I. INTRODUCTION

Our skeletal system has complex series of linkages that

produce coupled dynamics. For instance, when we quickly

move our forearm by flexing the elbow joint, the flexion

torques on the elbow joint accelerate our forearm. How-

ever, due to the forearm’s inertia, this acceleration produces

torques also on the shoulder. These interaction torques have

the undesired effect of accelerating the upper arm segment.

The dynamics of multijoint limbs often causes such complex

torques. However, the able-bodied subject can normally

handle such interaction torques with motor learnig and its

prediction without any problem [9][2]. Vertical reaching

task was studied in both patients with cerebellar lesions

and control subjects in [1]. They concluded that cerebellar

patients had specific deficits in their predictive compensation

for the interaction torques. In control subjects, the elbow and

shoulder joints rotated in synergetic way to compensate the

interaction torques [4].

It is known that Cerebellum takes important role in such

motor learning by developing the internal model while

comparing the actual outcome to the predicted outcome

[5][14]. Feedback-error-learning (FEL) is well studied to

bring computational adaptation paradigms, including prism

adaptation, saccade adaptation and reaching [7][6]. There is

extensive evidence that the learning system using feedback

error relies on the cerebellum.

FEL can reduce the average error to zero, but once this is

achieved, it doesn’t provide a mechanism to systematically

improve performance further such as minimizing total energy

or torque changes [13] especially in the case of redundant
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system. Thus, additional mechanism has been introduced

such as optimization with cost function [2][12]. However,

it is doubtful for the usage of optimization in our actual

neural system. Except the usage of cost function, the simple

control paradidm has not yet been reported.

Recently, the novel learning scheme named Tacit learning

has been proposed [10][11]. Tacit learning is one of the

biomimetic learning architecture where the primitive behav-

iors composed of the reflexive actions are tuned to the be-

haviors adapted to the environment taking the environmental

information into the controller through body/environment

interactions. The experimental result demonstrated that the

walking gait composed of the primitive motions of the swing

leg was well adapted to the environment in terms of the

walking efficiency [11].

In this paper, we propose an optimal control paradigm

in motor learning of reaching task which has computational

adaptability and optimality without using cost-function based

optimization. We demonstrate that simple tacit learning can

realize both environmental adaptation and optimal control

synchronously in vertical reaching task. The some simulation

results with redundant actuators indicated that the proposed

method can systematically produce motor synergies and

energy efficiency in vertical reaching task which involves

complex interaction torques.
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Fig. 1. Schematic representation of vertical reaching task.
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II. TACIT LEARNING FOR VERTICAL REACHING

A. Vertical reaching and its dynamics simulation

In this work, we verify the performance of tacit learning

in vertical reaching as shown in Fig. 1. This configuration

was used in [1]. In a patient with cerebellar damage, it was

difficult to control the end point of the arm in a synergetic

way among multiple joints due to the gravity and interaction

torques. It implies that cerebellar damage affects prediction

of interaction torques which can be normally made based

on the internal model established from motor learning. In

order to compensate interaction torques, motor learning is

essential. Thus, we evaluate the proposed computational

learning paradigm in this vertical reaching task.

For the joint dynamics simulation, we have used MatODE

[3] which is a Matlab interface to the Open Dynamics Engine

[8]. In a sagittal 2D plane, 3 Degrees-of-Freedom (DOF)

composed of shoulder, elbow, wrist joint was assumed. The

upper arm, forearm and hand segments were connected

through each joint in the dynamics simulation environment.

Thus, we have an access only to the control of each joint

torque and no access to the manipulator dynamics model in

the learning process. It should be noted that this configuration

is in so-called Bernstein’s DOF problem where we have

actuation redundancy in the task space.
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Fig. 2. Motor learning for reaching motion by tacit learning. Task space
command by artificial field. Feedback command error and local PD control
input are integrated.

B. Controllers in Tacit Learning

In Tacit Learning, the environmental signal accumulations

play the main role to create the appropriate behaviors. In

biological controllers, signal accumulations can be consid-

ered as the typical learning method to create the behaviors

adapted to the environment such as long term depression and

augmentation in cerebellum.

In the previous tacit learning for biped walking, joints were

divided into kinematically specified ones and unspecified

group. Then, unspecified joints were controlled with tacit

learning. In this work for reaching task, only the desired po-

sition of the endpoint is given, and all joints were controlled

with tacit learning as in Fig. 2.

The left side of this figure corresponds to the task space

feedback. The linear attractive field is used as the intention

of the subject which tries to follow the target. The right

side corresponds to the tacit learning in joint space. Torque

signal accumulations are performed with local PD controller

and feedback command error from the task space. Only

kinematics is assumed as known through Jacobian of the arm

to map joint space and task space. All dynamical parameters

such as segment inertia and mass, and the model itself are

completely blind.

The controllers for tacit learning are expressed as follows:

τ = −J
T (θ)k∆x−A∆θ −Bθ̇ +C

∫

τdt. (1)

where, τ implies the torques of joints, θ implies the angles

of joints. JT (θ) is the transpose of the Jacobian of the arm,

k is the intensity of the attractive field, ∆x is the endpoint

error. A and B consist of the proportional and derivative

gains of PD controllers. C consists of the integral gains of

the output torque integral. The term A∆θ is optional, it can

be set if you specify the neutral position of the joint. Note

that all joints are controlled independently.

III. EMERGENCE OF MOTOR SYNERGY

A. Simulation Study

In order to evaluate the performance of the proposed tacit

learning, we have compared the control results of vertical

reaching between (a) PD controller and (b) tacit learning

with PD controller. The difference is the existence of the

last term in (1). The target point in the coordinate system of

Fig.1 was given as below:

r(t) =
[

0.3 −0.3− 0.2sin(2πft)
]T

.

It is a task to move his finger tip vertically between two

points in the frequency f=0.5Hz. Initial joint angles are θ1 =
0◦, θ2 = 90

◦, θ3 = 0
◦. As for the segment length, the inertia

around z axis and the mass of the upper arm, the forearm

and the hand, they are set respectively as follows:

l1 = 0.31[m] l2 = 0.27[m] l3 = 0.1[m],

I1 = 0.0141[kgm
2] I2 = 0.0120[kgm

2] I3 = 0.001[kgm
2],

m1 = 1.93[kg] m2 = 1.32[kg] m3 = 0.35[kg]

In this study, the value of 30 percent of the above mass was

used to have the convergence of the learning within 60s.
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Fig. 3. End point transition. (a) only with PD control (b) with tacit learning
in addition to the PD control.
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Fig. 4. Phase portrait of shoulder, elbow and wrist joint in joint angle-angular velocity.(a) only with PD control (b) with tacit learning in addition to the
PD control. We can find tacit learning leads to synergetic motion with effective one-loop orbit in each joint.

B. Control Results

Fig. 3 represents a control result of vertical reaching. The

plot in Fig. 3(a) is the end point in the case only with

PD control, the plot in Fig. 3(b) is with tacit learning in

addition to the PD control. The time sequential transition is

illustrated using color map which changes depending on the

time progress. The color map correspondence to time can be

seen in the color bar in the right side of Fig. 4. A cool color

map is used for (a) PD control, a jet color map is used for

(b) tacit learning. This colormap configuration is used also

in other figures in this paper.

Fig. 3(a) shows that PD control is largely affected by the

gravity and the interaction torques. On the contrary, we can

find that the trajectory is being corrected in time in the case

of tacit learning minimizing the effect of the gravity and

interaction torque. Fig. 4 shows a phase portrait of shoulder,

elbow and wrist joint in joint angle-angular velocity. We can

find tacit learning leads to synergetic motion with effective

one-loop orbit in each joint. On the contrary, the phase

portrait in PD control is not one-loop orbit. It implies that

one joint motion conflicts with other joints motion. In tacit

learning case, it is interesting to see such synergetic solution
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Fig. 5. Torque phase portrait of shoulder-elbow and wrist-elbow joint.(a)
only with PD control (b) with tacit learning in addition to the PD control.
We can find tacit learning leads to synergetic torque production compared
to the PD control of individual joint.

is being found with dynamics model-free and cost-function-

free approach. Fig. 5 indicates a torque phase portrait of

shoulder-elbow and wrist-elbow joint. We can find the torque

production in tacit learning is converged into more aligned

synergetic solutions compared to the case in PD control of

individual joint. It implies that the tacit learning allowed

to learn how to manage the interaction torques and find

synergetic combination between neighbouring joints to bring

an efficiency of multijoint coordination.

Shoulder joint torque solution is depicted in Fig. 6. The

plot in cool color map represents the controlled torque

only with PD controller. The plot in jet color map is the

controlled torque with tacit learing. We can find that the

torque amplitute in the tacit learning is much less than

the one in PD controller. It implies that tacit learning has

also the function to minimize the torque production. Energy

consumption in one cycle of reaching was measured and

compared between PD control and tacit learning. The vertical

reaching task in this study was the motion between two ver-

tically located points in the frequency 0.5Hz. Therefore, the

energy consumption during every 2 second was calculated

by summing up each joint energy consumption 2πτ θ̇. The

energy consumption transition along with the time progress

is summarized in Table I. We can notice that the energy
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Fig. 6. Shoulder joint torque solution only with PD control (cool color
map) with tacit learning in addition to PD control (jet color map). We can
find tacit learning leads to minimizing torque production.
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consumption is lower in tacit learning and is being minimized

in the course of motor learning while the energy transition

is stayed constant in the case of PD control since there is

no adaptive functionality. We should note that the vertical

displacement of the end point is less in PD control as

in Fig. 3. Thus, the actual difference of energy efficiency

is much larger than the value in this table. The vertical

displacement is longer with 25 percent in tacit learning. Then

the energy consumption also can be higher with 25 percent,

however the actual reaching task could be performed with

even less energy than PD control thanks to the synergetic

motor solutions in tacit learning.

TABLE I

ENERGY CONSUMPTION IN ONE CYCLE OF REACHING

Time (s) 2 10 20 30 40 50 60

PD 30.1J 20.3J 20.0J 20.0J 20.0J 20.0J 20.0J

Tacit 31.3J 20.0J 18.8J 19.5J 18.4J 18.3J 18.2J

IV. CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel computational

control paradigm in motor learning of vertical reaching

task which involves the management of interaction torques

and gravitational effect. From the control result in vertical

reaching, we claim that the proposed method is valid for

acquiring motor synergy in the system with actuation redun-

dancy. We should highlight that the tacit learning in vertical

reaching task bring computational adaptability and optimality

with model-free and cost-function-free approach differently

from previous studies. Energy efficient solutions could be

obtained by the emergence of motor synergy in the redundant

actuation space.

In addition, the simulation result obtained in this paper

showed good correspondence to the experimental result in

[1]. In their experiment, they found that the inability to pro-

duce accommodative joint torque for the dynamic interaction

torques appears to be an important cause of kinematic deficits

shown by subjects with cerebellar abnormality. Thus, the

reaching by them included incoordination of the shoulder

and the elbow joints, a curved endpoint trajectory according

to [1]. Those characteristics of reaching in subjects with

cerebellar abnormality is equivalent to the result (a) only

with PD control in this study. On contrary, the experimental

reaching in able-bodied subject showed the correspondence

to the result (b) with tacit learning. In [1], they suggest that

a major role of cerebellum is in generating joint torques

at a joint that will predict the interaction torques being

generated by other moving joints and compensate for them.

It implies that the proposed computational learning paradigm

represents well the learning principles actually taken place

in cerebellum.

Uncovering the unknown mechanism in motor learning

has significant meaning in computational rehabilitation. Re-

cently, the some robotics devices or neuroprosthetic devices

such as functional electrical stimulation are to be used

for rehabilitation of the patients with motor disabilities.

Rehabilitation is a sort of motor learning in the sense where

the patients need to find new neural path way to achieve

certain task. By means of taking advantage of the hidden

principles in our motor learning, the effective rehabilitation

protocol would be designed along with the computer-aided

approach.
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