
  

  

Abstract—This study aims to recognize movement intent of 
patients with multiple sclerosis (MS) by decoding 
neuromuscular control signals fused with mechanical 
measurements as a method of powered lower extremity 
exoskeleton control. Surface electromyographic (EMG) signals 
recorded from the lower extremity muscles, ground reaction 
forces measured from beneath both feet, and kinematics from 
both thigh segments of a single MS patient were used to identify 
three activities (level-ground walking, sitting, and standing). 
Our study showed that during activity performance clear 
modulation of muscle activity in the lower extremities was 
observed for the MS patient, whose Kurtzke Expanded 
Disability Status Scale (EDSS) was 6. The designed intent 
recognition algorithm can accurately classify the subject’s 
intended movements with 98.73% accuracy in static states and 
correctly predict the activity transitions about 100 to 130 ms 
before the actual transitions were made. These promising 
results indicate the potential of designed intent recognition 
interface for volitional control of powered lower extremity 
exoskeletons. 

I. INTRODUCTION 
ULTIPLE sclerosis (MS) is a nervous system disease 
that affects the brain and spinal cord. MS is caused by 

damage to the myelin sheath, which slows or stops electrical 
signal conduction between nerve cells [1]. Population surveys 
indicate that approximately 75% of patients with multiple 
sclerosis experience mobility problems, mainly caused by 
muscle weakness, spasticity, ataxia, imbalance, sensory loss, 
and pain [2]. There are approximately 400,000 people with 
MS, and every week, about 200 people are diagnosed in the 
United States [3]. World-wide, MS affects about 2.5 million 
people. Therefore, there is a pressing need to enhance the 
mobility of individuals with MS and to improve the quality of 
their life. 

In order to restore some degrees of lower extremity 
mobility, passive lower extremity exoskeletons have been 
developed and widely used by MS patients. The simplest 
example of a passive device is a long-leg brace coupling with 
a pair of ankle foot orthoses (AFOs) which provide support at 
the ankle joint and lock the knee joints against flexion. The 
hip joint is stabilized by the tension in the ligaments and 
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musculature on the anterior aspect of the pelvis [4]. These 
passive exoskeletons require high level strength from the 
user’s upper extremity, and usually can only generate slow 
walking speeds. With the rapid advancement of electronics 
and electromechanics, powered lower extremity exoskeletons 
have emerged both in commercial market (e.g. HAL-5 
exoskeleton developed by CYBERDYNE, Inc., ReWalk 
powered orthosis designed by Argo Medical Technologies, 
eLEGS developed by Berkeley Bionics, and REX powered 
exoskeleton from Rex Bionics) and research fields [4-8]. 
Unlike the passive devices, the powered lower extremity 
exoskeletons can actively generate power at the joints. 
Therefore, the powered lower extremity exoskeletons are able 
to allow the MS patients to perform activities which are 
difficult or even impossible when wearing passive devices, 
enabling them to walk more naturally and/or efficiently [9]. 

To command the exoskeleton to the desired activity state 
(e.g. sitting, standing, and level-ground walking), an interface 
between the user and the device is necessary so that the user 
can “tell” the exoskeleton his or her intended movement and 
then the device can adjust control to coordinate with user 
intent. Many approaches based on body motions [10], a 
manual switch [11], and external sensors on the upper 
extremity [12] have been reported for the lower extremity 
exoskeleton control. For instance, Quintero et al. [4] used the 
distance between the user’s center of pressure (COP) and the 
location of the forward ankle joint as the primary command 
input to switch the activity states. A group at the University of 
California, Berkeley designed a human machine interface to 
sense the user’s natural arm gestures and crutch motions to 
allow the safe mode transitions [12].  

To enable more intuitive control of powered lower 
extremity exoskeleton, one potential approach is to recognize 
the user’s intent by decoding the neuromuscular signals. 
Sankai et al [13]. developed a full-body hybrid assistive leg 
(HAL)-5 exoskeleton, which recognized the user’s intent by 
sensing surface electromyography (EMG) signals from thigh 
muscles, and kinematics from both lower limbs and torso 
from healthy subjects. In our group, a 
neuromuscular-mechanical fusion based on a user intent 
recognition interface was developed to recognize 
transfemoral amputees’ intent to control  powered lower limb 
prostheses [14-16]. Inspired by this approach, several 
questions were raised: can this previously designed interface 
be used to recognize the MS patient’s movement intent for the 
powered lower extremity exoskeleton control? Is there 
sufficient neuromuscular information that can be extracted 
from MS patients, since the nervous system may be damaged 
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by MS diseases? To address these questions, this preliminary 
study (1) investigated activity of bilateral lower extremity 
muscles in MS patients during different activity performance, 
and (2) implemented our previously designed interface to 
identify the MS patient’s movement intent. The results of this 
study could aid the future design of volitional control of 
powered lower extremity exoskeletons and eventually 
enhance the mobility and quality of life of MS patients. 

II. METHODS 

A. Participant and Experimental Measurements 
This study was conducted with Institutional Review Board 

(IRB) approval at the University of Rhode Island and written, 
informed consent of the subject. One female patient with 
multiple sclerosis (MS) was recruited. The Kurtzke Expanded 
Disability Status Scale (EDSS) of the patient subject was 6.0. 

Sixteen channels of surface EMG signals from muscles on 
lower extremities were collected. The monitored muscles 
included the gluteus maximus (GMA), gluteus medius 
(GME),  rectus femoris (RF), biceps femoris long head 
(BFL), adductor magnus (ADM), tibialis anterior (TA), 
peroneus longus (PERO), and gastrocnemius lateral head 
(GASL) on both sides. The locations of the electrode 
placement were determined by anatomical locations [17] and 
muscle palpation. A ground electrode was placed on the bony 
area near the anterior iliac spine. Active bipolar surface EMG 
electrodes were used to record the EMG signals; the 
electrodes contained a preamplifier that band-pass filtered the 
EMG signals between 10 and 1000 Hz with a pass-band gain 
of 20. A 16-channel EMG system (MA 300, Motion Lab 
System, U.S.) was used to collect the EMG signals.  The 
EMG system filtered signals between 20 and 450 Hz with a 
pass-band gain of 1000 and, then, sampled at 1000 Hz. 

A foot pressure measuring system ((Pedar-X, Novel 
Electronics Inc., Germany) was placed under both feet to 
measure the vertical ground reaction force and detect gait 
events. In addition, two inertial measurement units (IMUs) 
(Xsens Technologies B.V., Enschede, The Netherlands) were 
used to measure the kinematics of the subject’s thigh 
segment. Both IMUs were tightly affixed to the lateral side of 
the thighs and aligned with the coordinate system in the 
standing position (see Fig. 1). Three-degree-of-freedom 
linear accelerations and the angular velocity of each thigh 
segment were directly measured by the IMUs. Both foot 

pressure and kinematic measurements were sampled at 100 
Hz and were synchronized with the EMG signals.  

B. Experimental Protocol 
Three activities and four mode transitions were 

investigated in this study. The activities included 
level-ground walking (W), standing (ST), and sitting (S); the 
resultant transitions included standing up (S→ST), gait 
initiation (ST→W), gait termination (W→ST), and sitting 
down (ST→S). 

For level-ground walking, the subject was instructed to 
walk along a straight walkway at her comfortable walking 
speed with a cane. For sitting and standing activities, the 
subject was asked to transition between sitting and standing. 
When in standing positions, the subject was allowed to make 
small steps and shift her weight; during sitting, the subject 
was allowed to move her lower extremities. In each 
experimental trial, the subject was asked to transition between 
different activities in a fixed sequence: sitting, standing, 
level-ground walking, standing, and sitting. Each trial lasted 
about 50 seconds and a total of 15 testing trials were 
conducted. During the experiment, the subject was protected 
from falling by a railing harness system. Rest periods were 
allowed between trials to avoid fatigue.  

C. Recognition of MS Patient’s Movement Intent 
 A neuromuscular-mechanical fusion based user intent 

recognition interface had been designed to interpret 
transfemoral amputees’ intended movements in our previous 
studies [14, 15]. The system architecture of designed 
interface is demonstrated in Fig. 2. The multichannel 
measurements are preprocessed and segmented into sliding, 
overlapped analysis windows. Features representing the 
signal patterns are extracted and fused into one feature vector. 
The feature vector is then fed to a phase-dependent pattern 
classifier, composed of multiple subclassifiers corresponding 
to individually defined gait phases for intent recognition. The 
classification decisions are further post-processed to 
eliminate erroneous predictions.  

1) Signal Preprocessing and Feature Extraction: Raw 
EMG signals were band-pass filtered by a 20–450 Hz 
sixth-order Butterworth digital band-pass filter. The ground 
reaction force was filtered by a low-pass filter with a 45 Hz 
cut-off frequency. The linear accelerations and angular 
velocities of the thigh segment were low-pass filtered with a 

 
Fig. 2. Architecture of intent recognition interface based on 
neuromuscular-mechanical fusion. 
 

 
Fig. 1.  Experimental setup on the recruited MS patient subject 
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20 Hz cut-off frequency. The multichannel data were then 
segmented into several overlapped analysis windows with a 
160 ms window length and 20 ms window increment. Each 
window was assigned a gait phase index and an activity label. 
One gait cycle was separated into four gait phases by the two 
gait events of both feet: heel-strike and toe-off, which were 
detected by the foot pressure measuring system. The labeling 
of activities was done by manual indication of mode 
transitions from an experimenter. Four time-domain (TD) 
features [18] (mean absolute value, number of slope sign 
changes, waveform length, and number of zero crossings) 
were extracted from each EMG signal in each analysis 
window. The mean, maximum, and minimum values of 
ground reaction force and thigh kinematics were extracted as 
features from each measurement. 

2) Pattern Recognition Algorithm : A multiclass nonlinear 
support vector machine (SVM) with “one-against-one” 
(OAO) scheme [19] and C-Support Vectors Classification 
(C-SVC) [20] were used to classify different intended 
activities. The applied kernel function was the radial basis 
function (RBF). More details about SVM algorithm can be 
found in [19, 20]. Leave-one-out cross-validation (LOOCV) 
[21] was used to evaluate intent recognition performance. 
During this procedure, data from one experimental trial were 
used as the testing data; data in all other trials were used as the 
training dataset. This procedure was repeated 15 times until 
each trial was used as the testing set. In addition, a 5-point 
majority vote scheme is applied to eliminate erroneous 
decision outputs from the classifier. 

D. Evaluation 
The performance of the intent recognition system was 

evaluated using three parameters: (1) recognition accuracy in 
static states, (2) the number of missed activity transitions, and 
(3) transition prediction time. The static state is defined as the 
state that subject continuously performed the same activity 
(e.g. level-ground walking, sitting, or standing).  The 
transition prediction time was defined as the elapsed time 
from the moment when the interface correctly predicted the 
intended activity to the critical timing for the targeted  
transitions. For the transitions between sitting and standing, 
the critical timing was defined as the moment that the subject 
started to sit down or stand up, which was detected by the 
large change of angular velocity of thigh segment; for 
transition from standing to walking, the critical timing was 
defined as the toe-off of the leading leg; for transition from 
walking to standing, the beginning of initial double limb 
stance phase was regarded as critical timing. A transition was 
missed if no correct transition decision was made before the 
defined critical timing. More details about the definition of 
evaluation parameters can be found in a previous study [14].  

III. RESULTS 

A. Muscle Activity of Lower Extremities on MS Patient 
    An example of preprocessed EMG signals measured from 
lower extremity muscles during one stride cycle is shown in 

Fig. 3. Clear EMG modulation in lower extremity muscles 
was observed during walking.. This implied that 
neuromuscular  control information was still represented in 
leg EMG signals, which can be potentially used for 
recognizing a user’s intent. 

B. Performance of Intent Recognition on MS Patient 
The intent recognition accuracy in static states was 

calculated and averaged across all the 15 testing trials. The 
overall accuracy for recognizing the level-ground walking, 
standing, and sitting was 98.73%. All the activity transitions 
were predicted before the subject actually transited from one 
activity to another. The prediction times of four types of 
transitions was shown in Table I.   

The intent recognition results in one representative testing 
trial were shown in Fig. 4. During about 45 seconds testing 
trial, a total of five decisions (indicated by red circle in Fig. 4) 
were misclassified. These errors happened between 

 
Fig. 4.  Intent recognition results in one representative testing trial. The 
red dash line indicates the critical timing for each type of activity 
transition. 

 
Fig. 3.  Example of EMG signals measured from several lower extremity 
muscles during one gait cycle. “C” represented contralateral side. 

TABLE I. PREDICTION TIME OF MODE TRANSITIONS  
BEFORE CRITICAL TIMING 

Transition W→ ST ST→ W ST→  S S → ST 

Prediction 
Time (ms) 

112.7 ± 
23.4 

131.5± 
27.2 

103.6± 
32.9 

   126.3 ± 
40.2 
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level-ground walking and standing. All transitions were 
correctly recognized before the defined critical timing 
(indicated by the red dash line in Fig. 4). 

IV. DISCUSSION 
To enable volitional control of powered lower extremity 

exoskeletons, a reliable and safe interface between the user 
and the robotic devices is needed to recognize the user’s 
movement intent. Inspired by the promise of the 
neuromuscular-mechanical fusion-based user intent 
recognition interface previously developed in previous study 
for powered lower limb prosthesis control, we are interested in 
extending this technology to lower extremity exoskeletons in 
order to improve the mobility of MS patients. To address this 
question, we first need to know whether or not sufficient 
neuromuscular information can be extracted from MS 
patients, since the nervous system may be damaged caused by 
MS diseases. Based on the observation of recorded EMG 
signals measured from the lower extremities of MS patient 
(see Fig. 3), it was found that the modulation of leg muscle 
activity still existed on the recruited subject even though her 
EDSS is 6.0 (i.e. patient needs assistive device for walking). 
This may imply the potential use of EMG signals as an 
interface for accurate intent recognition in MS patients. 

A previously designed user intent recognition interface 
based on neuromuscular-mechanical fusion was used to 
recognize the MS patient’s intended movements. The offline 
analysis results showed that the algorithm can recognize the 
subject’s intent (including sitting, standing, and level-ground 
walking) to high accuracy in static states. Additionally, the 
interface can predict activity transition about 100-130 ms 
before the subject actually switched the activity mode without 
any missed transitions. These preliminary results imply the 
potential of the designed interface for volitional control of 
lower extremity exoskeletons. 

Our future efforts will focus on (1) quantification of the 
performance of designed intent recognition system on more 
individuals with different stages of MS disease, (2) 
investigation of more activities (e.g. stair ascent/ descent, and 
ramp ascent/ descent), and (3) further development of 
volitional control of powered lower extremity exoskeleton for 
improved mobility in MS patients. 

V. CONCLUSION 
In this study, our previously designed user intent 

recognition interface was applied to recognize the movement 
intent of a patient with multiple sclerosis (MS). The 
modulation of lower extremity muscle activity was clearly 
observed in this recruited MS patient (EDSS=6). Offline 
analysis showed that the designed interface can recognize 3 
activity modes (e.g. sitting, standing, and level-ground 
walking) with a high accuracy and accurately predict the mode 
transitions with sufficient predication time. These preliminary 
results demonstrate the potential of volitional control of 
powered lower extremity exoskeleton by MS patients to assist 
their mobility. 

ACKNOWLEDGMENT 
The authors thank Ming Liu, Lin Du, Ding Wang and 

Gerry Hefferman at the University of Rhode Island, and 
Michael J. Nunnery at the Nunnery Orthotic and Prosthetic 
Technology, LLC, for their great suggestion and assistance in 
this study.  

REFERENCES 
[1] L. Steinman, “Multiple sclerosis: a two-stage disease,” Nat Immunol, 

vol. 2, no. 9, pp. 762-4, Sep, 2001. 
[2] M. H. Sutliff, J. M. Naft, D. K. Stough et al., “Efficacy and safety of a 

hip flexion assist orthosis in ambulatory multiple sclerosis patients,” 
Arch Phys Med Rehabil, vol. 89, no. 8, pp. 1611-7, Aug, 2008. 

[3] S. A. Rizvi, and M. A. Agius, “Current approved options for treating 
patients with multiple sclerosis,” Neurology, vol. 63, no. 12 Suppl 6, pp. 
S8-14, Dec 28, 2004. 

[4] H. A. Quintero, R. J. Farris, and M. Goldfarb, “Control and 
implementation of a powered lower limb orthosis to aid walking in 
paraplegic individuals,” IEEE Int Conf Rehabil Robot, vol. 2011, pp. 
5975481, 2011. 

[5] B. J. Ruthenberg, N. A. Wasylewski, and J. E. Beard, “An experimental 
device for investigating the force and power requirements of a powered 
gait orthosis,” J Rehabil Res Dev, vol. 34, no. 2, pp. 203-13, Apr, 1997. 

[6] N. Kawashima, Y. Sone, K. Nakazawa et al., “Energy expenditure 
during walking with weight-bearing control (WBC) orthosis in thoracic 
level of paraplegic patients,” Spinal Cord, vol. 41, no. 9, pp. 506-10, 
Sep, 2003. 

[7] J. A. Blaya, and H. Herr, “Adaptive control of a variable-impedance 
ankle-foot orthosis to assist drop-foot gait,” IEEE Trans Neural Syst 
Rehabil Eng, vol. 12, no. 1, pp. 24-31, Mar, 2004. 

[8] C. J. Walsh, “Biomimetic design for an under-actuated leg exoskeleton 
for load-carrying augmentation,” S m, Massachusetts Institute of 
Technology, 2006. 

[9] A. M. Dollar, and H. Herr, “Lower extremity exoskeletons and active 
orthoses: Challenges and state-of-the-art,” Ieee Transactions on 
Robotics, vol. 24, no. 1, pp. 144-158, Feb, 2008. 

[10] K. Amundson, “Control and Energetics of Human Exoskeleton.,” Ph.D. 
Thesis. University of California, Berkeley: USA., 2007. 

[11] “Argo Medical Technologies. "Products." Welcome to Rewalk.com.,” 
2010. Web. 14 July 2011. 

[12] K. A. Strausser, and H. Kazerooni, “The development and testing of a 
human machine interface for a mobile medical exoskeleton,” Intelligent 
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference 
on, pp. 4911-4916, 25-30 Sept. 2011. 

[13] E. Guizzo., and H. Goldstein., “The rise of the body bots,” IEEE Spectr., 
vol. 42, no. 10, pp. 50-56, 2005. 

[14] H. Huang, F. Zhang, L. J. Hargrove et al., “Continuous 
locomotion-mode identification for prosthetic legs based on 
neuromuscular-mechanical fusion,” IEEE Trans Biomed Eng, vol. 58, 
no. 10, pp. 2867-75, Oct, 2011. 

[15] F. Zhang, Z. Dou, M. Nunnery et al., “Real-time implementation of an 
intent recognition system for artificial legs,” Conf Proc IEEE Eng Med 
Biol Soc, vol. 2011, pp. 2997-3000, 2011. 

[16] F. Zhang, W. DiSanto, J. Ren et al., “A Novel CPS System for 
Evaluating a Neural-Machine Interface for Artificial Legs,” in 
Proceeding of 2nd ACM/IEEE International Conference on 
Cyber-Physical Systems, Chicago, IL, USA,, 2011. 

[17] A. Perotto, and E. F. Delagi, Anatomical guide for the 
electromyographer : the limbs and trunk, 3rd ed., Springfield, Ill., USA: 
Charles C. Thomas, 1994. 

[18] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for 
multifunction myoelectric control,” IEEE Trans Biomed Eng, vol. 40, 
no. 1, pp. 82-94, Jan, 1993. 

[19] M. A. Oskoei, and H. Hu, “Support vector machine-based classification 
scheme for myoelectric control applied to upper limb,” IEEE Trans 
Biomed Eng, vol. 55, no. 8, pp. 1956-65, Aug, 2008. 

[20] L. J. Hargrove, K. Englehart, and B. Hudgins, “A comparison of surface 
and intramuscular myoelectric signal classification,” IEEE Trans 
Biomed Eng, vol. 54, no. 5, pp. 847-53, May, 2007. 

[21]B. J. Frey, Graphical models for machine learning and digital     
communication, Cambridge, Mass: The MIT Press, 1998. 

4960


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

