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Abstract— One challenge in surgical simulation is to design
stable deformable models to simulate the dynamics of organs
synchronously. In this paper, we develop a novel mass-spring
model on the tetrahedral meshes for soft organs such as the liver
and gallbladder, which can stably deform with large time steps.
We model the contact forces between the organs as a kind of
forces generated by the tensions of repulsive springs connecting
in between the organs. The simulation system couples a pair of
constraints on the length of springs with an implicit integration
method. Based on the novel constraints, our simulator can
efficiently preserve the volumes and geometric properties of
the liver and gallbladder during the simulation. The numerical
examples demonstrate that the proposed simulation system can
provide realistic and stable deformable results.

I. INTRODUCTION

As one of the important training components, elastic
deformation models have been greatly studied in the last two
decades [1], [2], [3] for surgical simulation. A good overview
of deformable models has been reported in [3], e.g., mass-
spring models, finite element methods and finite difference
approaches. Among all these models, mass-spring models
[4], [5], [6], [7] are one of the most popular techniques to
simulate the animation of soft bodies due to their simple
structures.

A mass-spring model consists of a set of point masses
that are connected by ideal weightless elastic springs. The
points masses are either derived from the edges of a two-
dimensional polygonal mesh for representing surface of the
object, or they might originate from a three-dimensional
mesh mode representing both the surface and internal struc-
ture of the object. The other spring component obeys Hooke’s
law, which states that the force with which the spring
pushes back is linearly proportional to the distance from its
equilibrium length. With the external forces (due to contact,
gravity, etc.) and internal forces (due to the deformation
of springs), mass-spring systems are usually formulated as
time-varying partial differential equations based on Newton’s
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Second Law which, after discretization, become numerically
solvable as ordinary differential equations (ODEs).

In the literature, both explicit schemes [6], [7] and
implicit/semi-implicit schemes [4], [8], [9] were explored
to solve ODEs emerging from mass-spring models. Explicit
schemes compute the next status of the system from the in-
ternal forces estimated at the current iteration while implicit
schemes obtain the next status from the internal forces at
the next iteration. It is well-known that the explicit scheme
is numerically unstable unless the time step is made small
enough for interactive applications. Compared to explicit
schemes, implicit schemes are usually unconditionally stable
but require to solve a large sparse system in each time step.

In this paper, we describe a simulation system for multiple
bodies deformation that uses tetrahedral meshes and relies
on the implicit numerical integration scheme. By creating
the springs in between the contact surfaces of the liver and
gallbladder, we convert the contact forces into the internal
forces from the tensions of springs. For mass-spring models,
when a concentration of large forces occurs in a small region
of the soft body, the simulation result falls into the problem
of local deformation (the so-called “super-elastic” effect),
which makes it seems unrealistic [10]. To overcome this
problem, we derive a couple of constraints on the length
of springs as an additional post processing step for the
implicit integration. These constraints can prevent the soft
bodies from over-stretching and over-compressing, which
preserve the volumes and geometry properties of the soft
bodies during the simulation.

II. MASS-SPRING MODEL

Our mass-spring model for the liver and gallbladder is
designed based on volumetric meshes. A data structure that
describes the set of vertices, edges and tetrahedrons of the
mesh is illustrated in Fig. 1, both the tetrahedral mesh of the
liver and a tetrahedron unit are given. More specifically,

Fig. 1. Representation of volumetric meshes for the liver.
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¬ For a vertex, we store its current and rest positions;
 For an edge, we store the two adjacent vertices;
® For a tetrahedron, we store the four vertices formed the

tetrahedron.
Suppose our mass-spring model consists of n particles.

Each mass particle is linked to its neighbors by massless
springs of the rest length greater than zero. For the ith
particle, i = 1, . . . , n, it has the mass mi ∈ R and position
xi ∈ R3. The geometric state of all the particles is simply
m ∈ Rn and x ∈ R3n. The same component notation applies
to the force f ∈ R3n acting on the tetrahedral mesh and
fi ∈ R3 on the ith particle. The mass-spring system can be
described by the Newton’s Second Law as follows

mẍ = f , (1)

where ẍ is the second derivative of the position with respect
to time.

III. FORCES

The force in (1) denotes the total force in the system,
which includes internal spring forces, damping forces, con-
tact forces and user specified external forces.

A. Spring Forces

Springs are modelled with linear elasticity. The force
acting on mass i generated by the spring connecting i and
j is in direct proportion with the extension of the spring.
Therefore, according to Hooke’s Law, the spring force is
defined as follows

fs
i = ks(‖xj − xi‖ − l0) ·

xj − xi

‖xj − xi‖
, (2)

where ks is the spring’s stiffness and l0 is the rest length,
i.e., the distance between the two particles when the spring
exerts no force.

B. Damping Forces

Due to imperfect elasticity of physical bodies, the energy
dissipation occurs during the deformation. We use the spring
damping to represent the viscous force. These damping
forces are proportional to the difference of velocity v ∈ R3n

projected onto the spring and are momentum conserving as
well, which can be defined as

fd
i = kd

(vj − vi) · (xj − xi)
‖xj − xi‖

· xj − xi

‖xj − xi‖
, (3)

where kd is the spring’s damping constant.

C. Contact Forces
The gallbladder is connected to the lower surface of the

liver at the gallbladder fossa by connecting tissues. Due to
the anatomical position of the gallbladder to the liver, when
one applies external pull forces on the liver/gallbladder, there
exist contact forces in the contact surface of the liver and
gallbladder. Such contact forces emerge in pair on both the
liver side and gallbladder side. Therefore, we can regard them
as the internal forces in the mass-spring system. To define
these contact forces, we artificially create a set of repulsive

springs in between the contact surfaces of the liver and
gallbladder to repulse them in collision. Suppose the mesh
models representing the liver and gallbladder are composed
of two kinds of springs with different properties. The springs
connecting the liver and gallbladder is the third kind of
springs in the system. Thus, the contact forces between the
liver and gallbladder are also expressed as the spring forces
and damping forces on the connecting vertices. We can easily
control the performance of the contact forces by setting
proper stiffness and damping constant to the connecting
springs between the liver and gallbladder.

IV. IMPLICIT INTEGRATION

In the numerical simulation, Equation (1) is written as
two coupled first order equations by introducing the velocity
v ∈ R3 as follows {

v̇ = f(t)/m,
ẋ = v.

(4)

The most popular implicit integration scheme used in
computer graphics is the implicit Euler scheme [4]. We
construct a mass matrix M ∈ R3n×3n which is a diagonal
matrix with the main diagonal vector [m1, m1, m1, m2, m2,
m2, . . ., mn, mn, mn]. The implicit scheme for (4) can be
described as follows{

v(t + τ) = v(t) + τM−1f(t + τ),
x(t + τ) = x(t) + τv(t + τ),

(5)

where τ is the time step size. Hereafter we denote f(t) :=
f(x(t),v(t), t). The general way to solve such a system is
to use the Newton-Raphson method. This method starts at
a guess for the unknown v(t) and iteratively improves this
guess. To this end, the forces are linearized at current state
by Taylor expansion as follows

f(t + τ) = f(t) +
∂f

∂x

∣∣∣
t
· (x(t + τ)− x(t))

+
∂f

∂v

∣∣∣
t
· (v(t + τ)− v(t)) +

∂f

∂t

∣∣∣
t
.

(6)

By substituting the force (6) into the velocity update of
(5), we have

v(t + τ) = v(t) + τM−1
(
f(t) +

∂f

∂x
(x(t + τ)− x(t))

+
∂f

∂v
(v(t + τ)− v(t))

)
.

We can further simplify the above equation using x(t +
τ) ≈ x(t) + τv(t + τ) and obtain

v(t + τ) = v(t) + τM−1
(
f(t) + τ

∂f

∂x
· v(t + τ)

+
∂f

∂v
(v(t + τ)− v(t))

)
.

(7)

Let K := ∂f
∂x

∣∣∣
t
,D := ∂f

∂v

∣∣∣
t
. We can rearrange (7) to the

following linear system(
M − τD − τ2K

)
v(t + τ) =

(
M − τD

)
· v(t) + τf(t).

(8)
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The implicit integration method generates a large sparse
linear system (8) at each time step, which is solved by Gauss-
Seidel iteration in our simulation.

Remark: Since both the spring force (2) and damping force
(3) are functions of position, K is composed of two parts
(i.e., K := K1 + K2): K1 is produced by the spring force
and K2 is derived from the damping force.

V. VOLUMETRIC POSITION-BASED CONSTRAINTS

We obtain both the position x and velocity v in each
iteration of the implicit integration. We further introduce
constraints to the position as the post-processing process to
regularize the simulation results.

Given a constraint function C(x), we find the correction
∆x on position such that C(x + ∆x) = 0 as for cloth
simulation in [11]. The constraint function is linearized in
the neighborhood of the current solution using

C(x + ∆x) ≈ C(x) +∇xC(x) ·∆x = 0. (9)

Let ∆x be in the direction of ∇xC, that is ∆x = λ∇xC(x).
Therefore, we can solve ∆x from (9) as follows

∆x = − C(x)
|∇xC(x)|2

∇xC(x). (10)

Consequently, we have the following correction formula for
an individual vertex xi, i = 1, . . . , n,

∆xi = − C(x1, . . . ,xn)∑
i

|∇xi
C(x1, . . . ,xn)|2

∇xi
C(x1, . . . ,xn).

Due to the three-dimensional structure of the tetrahedral
mesh, such correction have to be a global action to guarantee
the stability of the system under the constraints. Therefore,
for the vertex xi, i = 1, . . . , n, we sum up all the terms ∆xi

contributed by the edges containing the vertex xi.
Since both the liver and gallbladder are far from having

ideal elasticity, we design a pair of constraints on the spring
length: over-stretching and over-compressing correction.

A. Over-stretching Correction

We set a critical stretching rate γs to the springs to protect
the spring from being stretched too much. More specifically,
when the length of the spring exceeds (1 + γs) ∗ l0, the
constraint is applied to correct the spring back to (1+γs)∗l0.
Therefore, we define the over-stretching correction to be an
inequality constraint as follows

Cstretch(xi,xj) = (1 + γs) ∗ l0 − ‖xi − xj‖ ≥ 0, (11)

Assume the above inequality constraint, the corrections on
the vertex xi and xj from (11) are computed as follows

∆xi = ∆+ = Cstretch(xi,xj) ·
xi − xj

‖xi − xj‖
,

∆xj = ∆− = −Cstretch(xi,xj) ·
xi − xj

‖xi − xj‖
.

After the implementation of the over-stretching constraint,
the position xi, i = 1, . . . , n is updated as follows

xi = xi +
∑

i∈N+
i

∆+ +
∑

i∈N−i

∆−, (12)

where N+
i denotes the set of edges that start from xi and

N−
i denotes the set of edges that end at xi.

B. Over-compressing Correction
Correspondingly, as long as the length of the spring is

less than (1− γc) ∗ l0, where γc is the critical compressing
rate, we use another constraint to move the spring back to
(1− γc) ∗ l0. The constraint is defined as

Ccompress(xi,xj) = ‖xi − xj‖ − (1− γc) ∗ l0 ≥ 0. (13)

Similarly, the corrections on the vertex xi and xj from the
constraint (13) are calculated by follows

∆xi = ∆+ = Ccompress(xi,xj) ·
xi − xj

‖xi − xj‖
,

∆xj = ∆− = −Ccompress(xi,xj) ·
xi − xj

‖xi − xj‖
.

In the end, we update the position of each vertex xk,
k = 1, . . . , n after applying the over-compressing constraint
based on Equation (12).

VI. NUMERICAL EXAMPLES
The anatomical model of the liver and gallbladder used

in our system are described in TABLE I. We follow the
liver environment defined in [12] to set up the boundary
conditions for the liver. Since the posterior border of the liver
is connected to the diaphragm by the coronary ligament, it
is reasonable to regard that region as the boundary condition
for the liver in the numerical implementation.

TABLE I
OVERVIEW OF MESH STRUCTURE.

Mash Vertices Edges Tetrahedrons
Liver 302 1552 1001

Gallbladder 238 1178 1741

In our simulation, we use five iterations of Gauss-Seidel
method to approximate the solution of the sparse linear
system (8) at each time step.

A. Liver Deformation
Fig. 2 shows the deformation of the liver under the

external forces. In this experiment, we choose different
critical deformation rate for both the over-stretching and
over-compressing constraints on the length of springs to
track the performance of the proposed method. In Fig. 2,
both the original liver mesh (blue one) and the deformed
liver mesh (pink one) are displayed for comparison. From
the experiment, we can conclude that the simulation system
converges to different results with different γs and γc.
Therefore, we can efficiently overcome the “super-elastic”
deformation arising in the mass-spring model by choosing
appropriate deformation rates. In surgery simulations, we
can set the deformation rates according to the mechanical
properties of soft tissues.
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(a) γs = γc = 0 (b) γs = γc = 0.1 (c) γs = γc = 0.2

(d) γs = γc = 0.3 (e) γs = γc = 0.4 (f) γs = γc =∞

Fig. 2. Liver deformation with the length constraints.

B. Liver and Gallbladder Deformation

For the simulation of the liver and gallbladder system, we
model the gallbladder be full of bile. The external forces are
applied on the gallbladder and the liver deforms following
the contact forces from the gallbladder side. Fig. 3 shows
the simulation results of the liver and gallbladder when the
system converges. The deformation of the liver illustrates that
the repulsive springs can well model the contact forces in
the contact surfaces. With the addition of the position-based
constraints, our simulator can efficiently avoid the collision
between the liver and gallbladder during the simulation.
The results demonstrate that the implicit integration method
performs stable for multiple objects system.

(a) γs = γc = 0

(b) γs = γc = 0.1

(c) γs = γc = 0.2

Fig. 3. Liver and gallbladder deformation with the length constraints.

C. Performance Analysis

In the last place, we display a summary in TABLE II on
the performance of the associated animations shown in Fig. 2
and 3. The largest deformation during the simulation shows
that the constraints work very efficient in controlling the

deformation. Furthermore, the proposed method can improve
the total iteration required for the simulation by applying the
position-based constraints (except for the case γs = γc = 0,
which is a very hard constraint). Therefore, the proposed
mass-spring model is reliable for practical implementations.

TABLE II
SYSTEM PERFORMANCE FOR SIMULATIONS IN FIGURE 2 AND 3.

γs γc time/iteration(s) total iteration largest deform
0 0 0.028 816 38.33

0.1 0.1 0.028 459 60.88
0.2 0.2 0.028 498 78.70
0.3 0.3 0.028 527 86.97
0.4 0.4 0.028 531 94.26
∞ ∞ 0.025 567 118.234
0 0 0.08 1874 40.94

0.1 0.1 0.08 1351 65.49
0.2 0.2 0.08 1536 79.18

VII. CONCLUSIONS
We have presented an implicit formulation with novel

constraints for simulating the deformation of the liver and
gallbladder in laparoscopic cholecystectomy. In our ap-
proach, we modeled the contact forces between the liver
and gallbladder by connecting the liver and gallbladder with
repulsive springs. We also incorporated the constraints on the
length of springs to preserve geometry properties of the liver
and gallbladder during the deformation. The performance of
the proposed model is well demonstrated by the numerical
examples.
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