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Abstract— This paper describes a novel method for the
identification of Hammerstein systems with time-varying (TV)
static nonlinearities and time invariant (TI) linear elements.
This paper develops a linear parameter varying (LPV) state-
space representation for such systems and presents a subspace
identification technique that gives individual estimates of the
Hammerstein components. The identification method is vali-
dated using simulated data of a TV model of ankle joint reflex
stiffness where the threshold and gain of the model change as
nonlinear functions of an exogenous signal. Pilot experiment
of TV reflex EMG response identification in normal ankle
joint during an imposed walking task demonstrate systematic
changes in the reflex nonlinearity with the trajectory of joint
position.

I. INTRODUCTION

Hammerstein systems are a class of block-oriented non-

linear systems consisting of a cascade of a static nonlinearity

and a linear dynamic element. Many physiological systems

including ankle joint reflex pathway can be represented by a

Hammerstein model [1], [2]. Moreover, many physiological

systems show time-varying/non-stationary behavior [3], [4].

Consequently, it is important to develop reliable algorithms

that can accurately identify TV Hammerstein systems.

It seems likely that under many conditions, time-varying

behavior is not explicitly time-dependent but is implicitly

dependent on variables within the system that vary with time

[5], [6]. Linear parameter varying (LPV) models are very

good candidates for representing such TV systems [7], [8].

LPV models have a model structure resembling that of a

linear system but have parameters that change as a function

of a time-dependent signal called scheduling variable (SV).

The TV parameters of the LPV model can be the coefficients

of its transfer function or its state-space matrices [7], [8].

This paper addresses the identification of a class of

LPV Hammerstein systems whose static nonlinear element

is time varying and the linear element is time invariant.

The motivation for focusing on this specific class of TV

Hammerstein models is the dynamics of the ankle reflex

pathway. Ankle reflex stiffness is defined as the dynamic

relationship between a joint position and the torque that

originates from changes in muscle activation induced by the
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stretch reflex arc. Previous studies have shown that reflex

stiffness varies with joint position and/or neural activation

to counteract external perturbations and control voluntary

movement [9], [10]. Therefore, the joint position and muscle

activation are suitable for representing the SV of an LPV

Hammerstein model of reflex stiffness. Experimental results

have shown that the characteristics of the nonlinearity such

as the reflex gain [11] and threshold [12] are modulated by

the joint operating point defined by joint position and level

of activation.

Identification of TV systems has been the subject of

many works in the literature. Ensemble-based TV methods

have been used for identification of joint stiffness during

movement [13], [14], [15]. These methods have some short-

comings: (a) they require trials with exactly the same TV

behavior which limits their applicability mainly to move-

ments that can be repeated; and (b) they cannot predict the

response to a new trajectory since TV changes are identified

as explicit functions of time without describing the functional

relationships underlying the modulation.

On the other hand, various LPV identification methods

have been developed which address the shortcomings of

the ensemble-based approaches using state-space [16] or

transfer function representations [17]. However, the major

disadvantages of the works to date are: (a) they estimate

a discrete-time LPV model of the system; converting these

to a continuous-time representation needed for physiological

interpretation can be difficult; and (b) they do not map the

identified discrete-time LPV model to individual elements

of the TV Hammerstein representation (i.e., static nonlin-

earity and linear dynamics). Consequently, existing LPV

identification methods cannot provide useful physiological

information.

This paper presents a novel LPV algorithm that estimates

the TV nonlinearity and TI linear dynamics of the Hammer-

stein cascade. The method allows straightforward extraction

of the continuous-time representation of the system elements.

Furthermore, the resulting LPV model can predict system

response to novel trajectories of the SV. This work is an

extension of the TI subspace Hammerstein identification

algorithm developed in [18].

This paper is organized as follows: Section II formu-

lates the problem and gives the theoretical development of

the algorithm. Section III demonstrates the validity of the

method using simulated data. Pilot experiment presented

in Section IV describes identification of ankle reflex EMG

response, revealing its functional variations with respect to

ankle position during an imposed walking task. Section V
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Fig. 1. LPV Hammerstein system model schematic.

provides concluding remarks and a discussion.

II. THEORY

A. Problem Formulation

Throughout this paper, vectors, matrices and scalars are

indicated by bold-face uppercase, uppercase and lowercase

letters, respectively. The objective is to identify a TV Ham-

merstein system consisting of a TV nonlinearity followed

by LTI dynamics. As shown in Fig. 1, let the input of the

Hammerstein cascade be u(k), the output of the nonlinearity

be z(k), the system output be y(k), and the SV be ρ(k).
Assume that N samples of input-output data are recorded,

i.e. k ∈ {0 · · ·N − 1}. The output of the nonlinearity is

described with the LPV model:

z(k) = f (u(k), ρ(k)) ≃
n
∑

i=1

ωi (ρ(k)) gi (u(k)) (1)

where ωi is:

ωi =

nρ
∑

j=1

ωijgj (ρ(k)) (2)

where ωij is the i, jth coefficient for the ith basis expan-

sion of the input, gi (u(k)), and jth basis expansion of

the SV, gj (ρ(k)). The basis expansion can be selected as

Chebychev, Hermite, etc. The objective is to estimate ωij ,

∀i ∈ {1, · · · , n} and ∀j ∈ {1, · · · , nρ}.
It will be assumed that the LTI component is stable and

can be represented by a state-space model:
{

X(k + 1) = AX(k) +Bz(k)

ỹ(k) = CX(k) +Dz(k) + n(k)
(3)

where, X(k) is a m × 1 state vector; Am×m , Bm×1,

C1×m and D1×1 are the state-space matrices; and ỹ(k) is the

measured system output contaminated with additive noise,

n(k) that is zero mean and uncorrelated with the input u(k).
Denote the elements of B and D by:

B = [b1, · · · , bm]
T

D = [d] (4)

Define the vectors:

Ωi =
[

ωi1, · · · , ωinρ

]T
(5)

Ω = [Ω1 · · ·Ωn]
T

Ui(k) =
[

gi (u(k)) g1 (ρ(k)) , · · · , gi (u(k)) gnρ
(ρ(k))

]T

U(k) = [U1(k) · · ·Un(k)]
T

Substitute (5) in (3) to yield:

{

X(k + 1) = AX(k) +BΩU(k)

ỹ(k) = CX(k) +DΩU(k) + n(k)
(6)

where:

BΩ =B ⊗Ω =







b1Ω
T
1 · · · b1Ω

T
n

...
. . .

...

bmΩ
T
1 · · · bmΩ

T
n






(7)

DΩ = D ⊗Ω =
[

dΩT1 · · · dΩTn
]

(8)

where ⊗ is the Kronceker product.

Note that this parameterization is not unique since for any

arbitrary scalar β, the vectors βB, βD and β−1Ω generate

the same matrices BΩ and DΩ. Consequently, to provide

a unique solution we set the first non-zero element of the

vector Ω to be positive and ||Ω|| = 1, where || · || is the

2-norm.

B. Identification Algorithm

The objective is to identify 1) the vectors Ω which

represent the shape of the nonlinearity as a function of the

SV and system input and 2) the linear state-space matrices A,

C, B and d which can be used to build the impulse response

function (IRF) model of the LTI system.

We use multivariable output error state-space (MOESP),

a class of subspace identification algorithms, to estimate the

state-space matrices Â and Ĉ based on constructed input

U(k) and measured output ỹ(k) [19]. Once these matrices

are estimated, we can form the following data equation [20]:

Y = Ψθ (9)

where Y = [ỹ(0) · · · ỹ(N − 1)] and Ψ is the regressor matrix

constructed based on known elements:

Ψ =







0 U
T (0)

...
...

∑N−2
τ=0 U

T (τ)⊗ ĈÂN−2−τ U
T (N − 1)






(10)

Define:

bd =
[

B
T d
]T

(11)

The vector θ of unknown parameters is:

θ = bd⊗Ω (12)

Equation (12) shows that the elements of the unknown

parameter vector θ are the product of the elements of bd

and Ω. To estimate the individual parameters of bd and Ω,

we transform (9) into two standard least-squares problems.

If we holdΩ fixed in (12), the output Y is a linear function

of the parameters of bd as follows:

Y = ΨΩbd (13)
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where the new regressor ΨΩ is:

ΨΩ = Ψ











DΩ1
0

... 0
DΩn

0

0 Ω











, DΩi
=







Ωi · · · 0
...
. . .

...

0 · · · Ωi







(14)

Similarly, if Ω is held fixed, the output Y is a linear

function of bd:

Y = ΨbdΩ (15)

where the new regressor Ψbd is:

Ψbd =







Dbd · · · 0

...
. . .

...

0 · · · Dbd






, Dbd =







































b1 · · · 0

...
. . .

...

0 · · · b1
...

...
...

bm · · · 0

...
. . .

...

0 · · · bm
d · · · 0

...
. . .

...

0 · · · d







































(16)

Algorithm: The following algorithm uses (13) and (15) to

estimate the unknown parameters bd and Ω. The algorithm

is iterative so variables are indexed according to the iteration

number j.

(i) Initialization:

Let j = 1 and Ω̂(0) = [1, · · · , 1]Tn×1.
(ii) Construct the matrix ΨΩ̂(j−1) using (14).

(iii) Estimate bd by solving the least-squares problem in

(13):

b̂d(j) =
(

ΨΩ̂(j)

)†

Y (17)

where † is the pseudo inverse.

(iv) Construct the matrix Ψ
b̂d(j) using (16).

(v) Estimate [ω1, · · · , ωn]
T by solving the least-squares

problem in (15):

Ω̂(j) =
(

Ψ
b̂d(j)

)†

Y (18)

(vi) Let s be the sign of first non-zero element of Ω̂(j):

s = sgn (ω̂1(j)) (19)

Then, perform the normalization:

b̂d(j)← b̂d(j)s
∥

∥

∥
Ω̂(j)

∥

∥

∥

Ω̂(j)←
Ω̂(j)s
∥

∥

∥
Ω̂(j)

∥

∥

∥

(20)

(vii) Compute the sum of squared error (SSE) between the

predicted output and the measured output.

(viii) Terminate if SSE satisfies the following condition; oth-

erwise replace j by j + 1 and go to step (ii).

SSE(j)− SSE(j − 1)

SSE(j − 1)
≤ threshold (21)
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Fig. 2. Properties of the nonlinearity used in the simulation studies as a
function of scheduling variable. (A) Threshold (B) Slope.

III. SIMULATION RESULTS

We simulated a TV Hammerstein model of reflex stiffness

during an imposed walking task. The model is an extension

of TI small signal model of ankle reflex stiffness described

in [11], which was a cascade of a nonlinearity and a second-

order low-pass filter. The nonlinearity was represented by

a threshold and a gain. Mirbagheri et al. [11] showed that

the reflex gain was highly modulated with the joint position

whereas damping and natural frequency of the linear system

were almost constant. Jalaleddini and Kearney [12] showed

that the threshold is also modulated with operating point.

Therefore, in the TV model, we simulated a fixed linear

component, and a static nonlinearity where the threshold and

gain change as a function of ankle trajectory during walking.

Consequently, the SV (ρ(k)) was set to the walking trajectory

recorded from a subject walking on a treadmill at 3 km/h

[21]. We formulated the simulated nonlinearity as follows:

z(k) = Gr(ρ(k))
∆u(k) + ∆u(k)sgn (∆u(k))

2
∆u(k) = (u(k)− ǫ(ρ(k))) (22)

where ǫ is the TV threshold and Gr is the TV reflex gain.

Fig. 2 shows variation of the threshold and gain as a function

of SV.

The linear system had TI second-order low-pass dynamics:

H(s) =
w2

s2 + 2sζw + w2
(23)

where w = 25 (rad/s) is the natural frequency and ζ = 0.9
is the damping.

We simulated this model in MATLAB Simulink for 60s

with sampling frequency of 1kHz. Joint velocity was the

input and reflex torque was the output. The input perturbation

was a pseudo random multilevel sequence low-pass filtered

at 30Hz to mimic the dynamics of the hydraulic actuator

that is used to drive the ankle joint in real experiments. We

computed the joint velocity, the input of the Hammerstein

system, by numerical differentiation of the position. A real-

ization of a white Gaussian noise was added to the output
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Fig. 3. Simulated signals: (A) perturbation velocity: input signal, (B)
walking cycle: scheduling variable, (C) measured and predicted output.

and scaled to give signal to noise ratio of 5dB. We used

Chebychev polynomials for basis function expansions.

Fig. 3 shows the input and output signals, the SV and

the output predicted by the LPV model identified using the

method developed in this paper. Inspection of Fig. 3 reveals

that the reflex torque is modulated by the SV where the

response to a perturbation at a plantarflexed segment of the

walking trajectory (around 16s) is considerably smaller than

that observed at a dorsiflexed segment (around 17.5s). The

LPV model accurately predicted 97% of the variations of the

true system’s output.

The identification results are summarized in Fig. 4. Panel

(A) shows the estimated static nonlinearity as a function

of the SV and system input. The amplitude of the esti-

mated nonlinearity significantly increased as the ankle was

dorsiflexed. This can be associated with an increase in the

gain of the nonlinearity and/or a decrease in its threshold

towards dorsiflexion. This is consistent with the simulated

gain and threshold of the nonlinearity depicted in Fig. 2.

Furthermore, panel (B) shows that the estimation error of

the 2-dimensional (2D) nonlinearity was relatively small.

Panel (C) shows the estimated and true IRF of the LTI

component of the TV Hammerstein system. There is an

excellent agreement between the two.

IV. EXPERIMENTAL VALIDATION

We performed a pilot experiment with a male subject with

no history of ankle pathologies. He gave informed consent

to the experimental procedures which had been reviewed

and approved by McGill University’s institutional review

board. The subject lay supine with the left foot attached by

a custom built fiberglass boot to the pedal of an electro-

hydraulic actuator operating as a very stiff position servo

[11]. We used a perturbed imposed walking paradigm where

the actuator moved the ankle along a trajectory similar to

that observed during normal gait superimposed by Pseudo

Random Binary Sequence (PRBS) perturbations. The peak-

to-peak amplitude of PRBS was set to 0.02 rad. The per-

turbed imposed walking trial lasted 70 seconds. The subject

was instructed to maintain a constant voluntary plantarflexion

contraction (i.e., push on the pedal) aided by visual feedback

of a linear combination of the processed EMG of the three

TS muscle heads (Medial and Lateral Gastrocnemius, and

Soleus).

Joint angular position was measured using a potentiometer

mounted in parallel with the actuator; the mid position of

the ankle was taken as zero, dorsiflexed displacement taken

as positive and plantarflexed as negative. Joint velocity was

numerically computed from the recorded position. EMG

signals were pre-amplified by a gain of 1000 and high-pass

filtered at 20 Hz to remove artifacts. Signals were anti-alias

filtered and then sampled at 1kHz. We applied the developed

LPV identification method to experimental data where joint

velocity was the input, Soleus EMG was the output and the

walking trajectory was the SV.

Fig. 5 shows the results of the identification. Panel (A)

depicts the estimated 2D nonlinearity which shows uni-

directional sensitivity to joint velocity which is consistent

with small signal identification results [1]. Moreover, it

shows that the gain is modulated by the walking trajectory.

Specifically, it is bigger in the dorsiflexed position compared

to the plantarflexed by a factor of almost 4. This trend in the

reflex gain is also consistent with that of small signal iden-

tification at multiple operating points (OP) [11]. However,

estimating a nonlinearity such as the one in Fig. 5 using

OP-based identifications, requires a large number of trials.

Moreover, it is not always analytically valid to interpolate

local models at each operating point to represent the global

TV behavior.

V. DISCUSSION

We presented a novel method for LPV identification of

a class of TV Hammerstein systems with TV nonlinearity

followed by an LTI dynamic component. We demonstrated

that the developed method is very accurate and robust to

measurement noise using simulations of a TV Hammerstein

model of reflex stiffness. Proof-of-principle experiments ver-

ified the utility of the method for identification of a TV

Hammerstein model of the stretch reflex EMG response

modulated by changes in joint position during an imposed

walking task. Experimental validation was performed for

reflex EMG rather than reflex stiffness since reflex torque is

not directly available for measurements (i.e., it is shadowed

by voluntary and intrinsic torques that are presumably time-

varying as well).

The LPV model structure developed in this paper can

be used to represent TV Hammaerstein systems with static

nonlinearity that is functionally related to a TV signal. This

corresponds to a relatively wide set of physiological systems

and functional tasks such as biomechanics of musculoskele-

tal system during movement (e.g., joint dynamics during

posture and gait, upper arm end-point stiffness in reaching

and pointing tasks). Moreover, the proposed identification

method estimates the elements of a TV Hammerstein system

using data from only a single trial. This is a significant

practical advantage over the OP-based methods.
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Fig. 4. Identified LPV Hammerstein model of reflex stiffness from simulated data: (A) estimated static nonlinearity, (B) error in the estimation of the
nonlinearity, (C) identified and true IRF.
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Fig. 5. Identified LPV Hammerstein model of Soleus reflex EMG from
experimental data: (A) estimated 2D static nonlinearity and (B) identified
IRF.

To identify TV behavior of dynamic joint stiffness defined

as the summation of intrinsic and reflex stiffness, we need to

extend the developed methodology to a TV parallel-cascade

(TVPC) structure. TVPC consists of a parallel combination

of a TV Hammerstein system for reflex pathway and TV

linear dynamics for intrinsic stiffness. This is a subject of

future work.
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