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Abstract— This paper addresses the issue of estimating the
position of the center of mass (CoM) of a free-floating object of
unknown mass distribution in microgravity using a stereoscopic
imaging system. The method presented here is applied to an
object of known mass distribution for validation purposes. In
the context of a study of 3-dimensional ballistocardiography
in microgravity, and the elaboration of a physical model of
the cardiovascular adaptation to weightlessness, the hypothesis
that the fluid shift towards the head of astronauts induces
a significant shift of their CoM needs to be tested. The
experiments were conducted during the 57th parabolic flight
campaign of the European Space Agency (ESA). At the be-
ginning of the microgravity phase, the object was given an
initial translational and rotational velocity. A 3D point cloud
corresponding to the object was then generated, to which
a motion-based method inspired by rigid body physics was
applied. Through simulations, the effects of the centroid-to-
CoM distance and the number of frames of the sequence
are investigated. In experimental conditions, considering the
important residual accelerations of the airplane during the
microgravity phases, CoM estimation errors (16 to 76mm) were
consistent with simulations. Overall, our results suggest that
the method has a good potential for its later generalization to
a free-floating human body in a weightless environment.

I. INTRODUCTION

Microgravity provides weightless conditions where, ac-

cording to rigid body physics, the movement of an object

is composed only of a translation and a rotation around its

center of mass (CoM), both of constant velocity. A motion-

based method is proposed which estimates the position of the

CoM of a free-floating object using a stereoscopic apparatus.

For validation purposes, experimental data were gathered in

parabolic flight using a box-like object of known geometry

and mass distribution.

This paper constitutes a proof of concept for an application

to human subjects in microgravity, as a contribution to

the development of a physical model of the cardiovascular

system for ballistocardiography signal analyses. Ballisto-

cardiography consists in measuring the acceleration of the

human body at the CoM due to cardiovascular activity.

The common procedure is to place an accelerometer at the

lower-back of the subject by assuming that it is close to

the actual CoM. This non-null distance generates artifacts

that need to be corrected. Microgravity conditions allows

the acceleration to be measured along the 3 dimensions and
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provides additional information compared to classical on-

ground measurements[1]. However, it raises the problem of

having the CoM shifted upwards due to a decrease in the

fluid concentration gradient inside the body[2].

II. PROTOCOLS AND EXPERIMENTAL PROCEDURES

The experiment was performed during the European Space

Agency (ESA) 57th parabolic flight campaign in October

2011. The box-shaped object that was manipulated is shown

in figure Its dimensions are 800× 200× 200mm. Fiducial

markers have been placed along its edges to improve the

robustness of the estimation method. The experiment was

conducted by two operators strapped to the floor of the

airplane. At the beginning of the parabola, the first operator

was standing in front of the cameras holding the object in

his hands. At the start of the microgravity phase, which lasts

∼ 20s, an initial rotation was given to the object. It was

then left free-floating as long as possible. A second operator,

standing behind the cameras, triggered them using a remote

control. Both cameras shot the scene simultaneously at a

frame rate of 5fps. At the end of the parabola, the object was

recovered by the first operator. The procedure was repeated

several times.

Fig. 1. Object free-floating during a parabola.

III. METHODS

The stereoscopic system was calibrated off-line using the

CALtag self-identifying checkerboard [3], combined with a

MATLAB implementation of Zhang’s calibration algorithm

[4]. Figure 2 shows the general framework for the data

processing stage. Extracting points of interest on the object
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is done in a semi-automatic way: For each left/right pair

of frames, points were selected manually in the left view.

The corresponding point was then found in the right view

via epipolar geometry and a simple cross-correlation based

method. By triangulating the corresponding 2D points, the

depth is reconstructed. The position of the CoM was then

estimated using two methods. The first one (leftmost branch)

is based solely on geometrical properties and requires the

3D coordinates of at least three corners of a face. A single

pair of frames is needed to reconstruct the CoM. The

second method, because it relies on motion, needs several

consecutive pair of frames to operate. The two methods are

presented in more details in the following section.

Reference CoM

scan epipolar line

Reconstructed 3D point cloud

Right View ImageLeft View Image

Extract 2D coord. of

point of interest

Extract 2D coord. of

point of interest

Triangulation

via Geometry

CoM Estimation

Validation

Model Fitting

via Motion

CoM Estimation

Fig. 2. Framework for the validation of the motion-based method.

A. Geometry-based method

As stated previously, this method only applies for objects

of which the geometry and mass distribution is known, pro-

viding reference data with which our motion-based method

is evaluated. Determining geometrically the position of the

CoM of our object is quite straightforward. Given the coor-

dinates of three corners belonging to the same face M0, M1

andM2, the CoM B is calculated using the face center point

Mc and the unitary vector n normal to the considered face

(cf. figure 3).

B = Mc +
l

2
n

B. Motion-based method

This method can be applied in the general case where the

mass distribution and the geometry of the object is unknown.

However, as will be shown later, a symmetry plane must be

defined for the problem to be solvable. The forward model,

which given a point-cloud corresponding to a rigid object and
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Fig. 3. Box-like object. Four corners are extracted

a trajectory (translation and rotation), allows to calculate the

coordinates of the point-cloud at later time instants. The goal

is then to solve the inverse problem, which can be formulated

as follows: Assuming that the motion is governed by the

proposed forward model and knowing the coordinates of the

point-cloud at several time instants, what is the best estimate

of the position of the CoM.

1) Forward model: It is assumed that the object is ob-

served in an inertial reference frame. Also, the object is rigid

and free-floating, i.e. no external force is applied. According

to rigid-body dynamics, its movement is composed of a

constant translational velocity and a rotation of constant

velocity around its CoM. The 3D N -point cloud at time k is

written {M1,k, ...,MN,k}. The associated CoM is denoted

Bk. The motion depends on the instantaneous translational

velocity Vk and rotational velocity Ωk which will be referred

to by its rotation matrix Rk. In order to improve readability,

both the translational and rotational velocities are normalized

with respect to the sampling period. The coordinate of the

CoM at time k is obtained by translating the CoM at time

k − 1 with vector Vk−1 (eq. 1). The ith point at time k + 1
Mi,k+1 is calculated recursively (eq. 2) and a uniform noise

w is added that accounts for pixel detection error. is added

to the generated point 3.

Bk = Bk−1 + Vk−1 (1)

Mi,k+1 = Rk [Mi,k −Bk] +Bk + Vk (2)

M̃i,k+1 = Mi,k+1 +w (3)

Figure 4 illustrates a box-shaped object to which our

forward model is applied on two consecutive frames.

2) Inverse problem and proof of undeterminacy:

The inverse problem consists in estimating Bk0 from

{M̃1,k, ...,M̃N,k}, k ∈ [k0−τ ; k0+τ ]. As stated previously,

the inverse problem, due to the property of the rotation

operator, is ill-posed. Without loss of generality, let’s assume
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Fig. 4. Applying the forward model to an object.

for now that Vk = 0, ∀k and R̂k, the estimate of the

rotational velocity, is known. The position of the CoM,

which is such that d (Mi,k0 ,Bk0) = d
(

Mi,k0+1
,Bk0

)

∀i,
describes the instantaneous axis of rotation. To circumvent

this indeterminacy, one needs to provide a constraint. In our

application, because the mass distribution of the considered

object is symmetrical, the CoM is contained on a symmetry

plane. The CoM will thus be defined as the intersection of the

instantaneous axis of rotation with the symmetry plane. In

what follows, estimation methods for the motion parameters

R and V are presented.

M3,k0

M1,k0

M2,k0

M1,k0+1

M0,k0+1

M3,k0+1

M0,k0

M2,k0+1

Fig. 5. Ill-posed inverse problem. Possible solutions for the Bk0
describe

the rotation axis (dashed line).

a) Estimating motion parameters: To perform our es-

timations , we assume that R and V are constant within

the time window corresponding to our point-cloud sequence.

This is compatible with the physical assumptions underlying

our forward model.

Estimating the rotation of a given sequence of point clouds

has been extensively studied [5] and applied in various

fields. We implemented the SVD-based algorithm of K.

Arun et al. [6], which allows to estimate, for each pair of

consecutive frames, a rotation matrix. The matrices are then

averaged [7]. As for the translational velocity, once again, an

indetermination appears. Indeed, if we try to eliminate Bk
from (2) by expressing Ṁi,k+1 = Mi,k+2 −Mi,k+1 as a

function of Rk and Vk, and replacing Rk by its estimate, we

notice that the set of solutions corresponds to the plane that

fits the several consecutive rotation axes of the point cloud.

Our solution consists in replacing Bk by the centroid M̄k

in equation 2, and considering τ past frames and τ future

frames. We thus write the mean velocity on a window of

length Nframes = 2τ + 1 as

V̂k0 =

N
∑

i=1

k0+τ
∑

k=k0−τ

M̃i,k+1 −
(

R̂k0

(

M̃i,k − M̄k

)

+ M̄k

)

It can be shown that this estimator is biased but asymp-

totically unbiased and consistent, i.e. V̂k0 → Vk0 and

E[(V̂k0 − Vk0)
2] → 0 as τ → ∞. Those properties are

verified in the simulation section.

b) Least-squares optimization for the CoM: The esti-

mated CoM is now constrained on the symmetry plane. Let

Pk0 be a point on the symmetry plane and u,v ∈ R
3 two

non-colinear vectors, we write:

Bk0,λ,µ=Pk0 + λu+ µv λ, µ ∈ R

The CoM can now be estimated by solving eq. 2 in the least-

square sense using τ future and past frames, i.e. on a window

of length 2τ + 1. Expressing eq. 2 for a delay τ , the CoM

at time k0 is given by:

B̂k0,λ,µ = argmin
λ,µ

∑

i

k0+τ
∑

k=k0−τ

∥

∥

∥

(

I3 − R̂k−k0k0

)

Bk0,λ,µ−

[

M̃i,k −
(

R̂k−k0k0
M̃i,k0 + (k − k0)V̂k0

)]∥

∥

∥

2

IV. RESULTS

A. Simulations

The performance of the motion-based method is now

evaluated through simulation. Based on a set of experimental

data, typical values of parameters V and R are chosen.

The space coordinates of the box-like object of figure 3 are

generated using its actual dimensions. The moving point-

cloud is then obtained by applying the forward model at

a frame rate of 5fps. Uniform noise is then added. For

different number of frames, 200 runs are generated to assess

the robustness of the estimator with respect to noise. The

reconstruction error ǫ =
∥

∥

∥
B̂k0 −Bk0

∥

∥

∥
is computed along

with the mean and standard deviation.

Figure 6 shows how the mean of the CoM reconstruction

error, i.e. the bias arising from the translational velocity

estimation decreases linearly as the number of frames in-

creases. The mean error then stabilizes, reflecting that the

translational velocity estimator disposed of enough frames

to correctly describe the translation. The residual error is

due to the symmetry plane being defined by noisy points,

which, by definition, is independent on the motion and the

number of frames.

Figure 7 shows how the CoM-to-Centroid distance affects

the reconstruction for different values of Nframes. Because

the translational velocity estimator relies on rotated centroids,
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Fig. 6. ǫ vs. Nframes. Uniform noise equivalent to 8 pixel detection error
and noiseless case.

decreasing that distance brings the centroids closer to the

actual CoM, thus, the estimated CoM is closer to the true

value.
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Fig. 7. ǫ vs. CoM-to-Centroid distance. Uniform noise: 8 pixels.

B. Experimental results

It is important to realize that in parabolic flights, the

airplane is subject to residual accelerations during the “zero-

g” phase, which is not taken into account in our model.

From the acceleration signal of the airplane made available

to us by the aircraft operator, a measure of the similarity

of the experimental conditions with “perfect” conditions is

proposed. Let Gx, Gy and Gz be respectively the x, y and z

acceleration of the airplane during the sequence, expressed in

the airplane’s reference system. The similarity criteria, called

residual acceleration is given by:

ar =

∥

∥

∥

∥

∥

∥

E [|Gx(k0 − τ) . . . Gx(k0 + τ)|]
E [|Gy(k0 − τ) . . . Gy(k0 + τ)|]
E [|Gz(k0 − τ) . . . Gz(k0 + τ)|]

∥

∥

∥

∥

∥

∥

Table I shows the reconstruction error obtained during 5

parabolas along with the number of frames Nframes.

TABLE I

EXPERIMENTAL RESULTS

Nframes ar [mG] ǫ [mm]

5 42.5 54.29

7 40 16.37

9 29.5 33

9 28.7 76

11 40 22.9

V. CONCLUSIONS

Because of important residual accelerations occurring dur-

ing parabolas, only short sequences were considered such

that conditions are as close as possible to an inertial reference

system. Our motion-based model could be improved to ac-

count for those accelerations, thus allowing longer sequences

and smaller reconstruction errors. Among the 5 parabolas

dedicated to the experiment, 5 sequences of 5 to 11 frames

(1-2 seconds) have been retained. The corresponding errors

(16.37 to 76 mm) are indeed similar to what has been

predicted via simulation (26 to 82 mm).

The simulations also suggest that to improve the accuracy,

the centroid should be taken close to the actual CoM. A good

a priori could be obtained in 1-g, in two different ways:

Through a biomechanical modeling approach based on body

segment kinematics or with a force plate based apparatus[8].

This a priori would be exploited to determine appropriate

placement of fiducial markers on the subject.
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