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Abstract— Motion capture based on magneto-inertial sensors
is a technology enabling data collection in unstructured en-
vironments, allowing “out of the lab” motion analysis. This
technology is a good candidate for motion analysis of children
thanks to the reduced weight and size as well as the use
of wireless communication that has improved its wearability
and reduced its obtrusivity. A key issue in the application
of such technology for motion analysis is its calibration, i.e.
a process that allows mapping orientation information from
each sensor to a physiological reference frame. To date, even if
there are several calibration procedures available for adults,
no specific calibration procedures have been developed for
children. This work addresses this specific issue presenting a
calibration procedure for motion capture of thorax and upper
limbs on healthy children. Reported results suggest comparable
performance with similar studies on adults and emphasize some
critical issues, opening the way to further improvements.

I. INTRODUCTION

The advent of MEMS technology in the 90s has fos-
tered the development of wearable sensors for measuring
kinematic, dynamic and even tribological [1], [2] quantities.
An outstanding example of this trend are Magnetic and
Inertial Measurement Unit (M-IMU) sensors, which identify
a class of devices comprising accelerometers, gyroscopes
and magnetometers.Besides acceleration, magnetic field and
angular velocity, the information coming from this kind of
sensor is usually combined to get an estimate of orientation,
relative to a global, earth-based System of Reference (SoR).
To this aim, a broad range of data fusion algorithms have
been explored in the literature [3], [4]; the most widespread
techniques are adaptations of the Extended Kalman Filter
(EKF) or its complementary version [5].

A small size board equipping a M-IMU, a microcontroller,
a wireless communication and/or a micro SD memory for
data logging, is nowadays a well established approach to the
3D human motion sensing and reconstruction problem [6].
The main drawbacks of this technology are drift issues that
affect orientation estimate, which are mostly due to gyro-
scopes integration and to the alteration of calibration param-
eters. Furthermore, exposure to strong magnetic fields may
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affect sensor performance, therefore periodic spot–checks are
required in order to re–assess system calibration [7].

Nonetheless, compared to other available motion track-
ing technologies, magneto–inertial sensors appear to be the
“closest thing to a silver bullet” for motion analysis on
children [8], [9], [10]. The possibility to precisely track and
quantitatively analyze children’s motion repertoire is of great
interest for a number of reasons. In fact, motor actions play
an important role during social interactions, as proven by
recent findings on mirror functions of the motor system
[11]. Furthermore, studies on motor and communicative
actions (e.g. gestures) in children with autistic spectrum
disorder (ASD) have highlighted the importance of assessing
motor behaviours for early diagnosis and intervention[12].
Tools usually employed in the analysis of human motor
control often require cumbersome machineries and dedicated
experimental settings and laboratories [13], [14]. Therefore
the development of appropriate evaluation tools usable in
unstructured environments may be of relevance in research
on both typical and atypical development.

Effective use of M-IMU sensors for human motion anal-
ysis requires: (i) the determination of the most appropriate
body areas where each sensor should be attached; (ii) dedi-
cated calibration procedures to assign to each body segment
an anatomical frame of reference (AF), and to define the
transformations between AFs and sensors’ reference frames.

Gold standard procedure to define local SoR would require
measurements of bony landmarks [15]. However, this can
not be applied to “in-field” applications. Therefore, other
procedures have been proposed for “in field” calibration,
which proved to be successful both for upper and lower limbs
[16], [17], [18], [19], [20]. In fact, there are two possible
techniques for the definition of local SoR using M-IMU
sensors: reference and/or functional method.

In the reference method, the subject wearing the M-IMUs
is asked to hold a certain established body configuration (e.g.
the standard anatomical position (SAP)).

On the contrary, functional methods are based on subjects
performing mono–axial movements. In this second case,
choice of movements to be performed is crucial for the
reliability of the estimated SoR.

Notwithstanding the existence of various studies docu-
menting efficient calibration procedures for adults, no study
to date provides an efficient method to calibrate a magneto-
inertial tracking system for its use with children.
The main goal of this paper is to provide novel data on
defining and implementing a calibration protocol to define
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local SoR for thorax and upper limbs, usable with healthy,
tipically developing (TD) children. In the following, the
proposed methodology is described in details and the pre-
liminary results are reported.

II. MATERIALS AND METHODS

A. Experimental setup

A set of 5 sensor units (Opal by APDM Inc.) were
wirelessly connected to a PC via an “access point”
transceiver provided by the manufacturer. Each sensor is a
lightweight box (22 g) containing a M-IMU and a micro SD
for robust sensor data logging. The orientation information
of the global, earth-based SoR (G) with respect to the sensor
local SoR (S) is also available via the manufacturer Kalman
filter, in the form of a quaternion qGS . The orientation
estimate is claimed to have a static and a dynamic accuracy
of ∼ 1.5◦ RMS and ∼ 2.8◦, respectively.

We developed a custom software platform, written in
C++ using the manufacturer API, for synchronized data
collection at the maximum update rate of 128 Hz. The
software is also provided with tools for real–time data
plotting and 3D motion visualization via a virtual reality
(VR) environment; the VR environment embeds a simple
kinematic model of a 3D character, which and has been
developed using the OGRE framework.

In our application, we considered thorax, upper arm, and
forearm as rigid segments, that constitute the kinematic
chain of the upper limbs.

A ball-in-a-socket type is assumed for all the joints of
interest, i.e. any possible rotation in the SO(3) space is
admitted. No model constraints (e.g. the elbow ab-adduction)
have been implemented at this stage, since the goal of
this work is to evaluate the performance of the proposed
calibration procedure.

Previously to data acquisition, accelerometer and
magnetometer calibration was assessed with the “in field”
methodology proposed in [9] and the gyroscope offset was
checked to be well under 0.1 rad/s, as suggested by the
manufacturer.

B. Methodology description

The 5 sensor units were placed on: thorax, latero-distally
on the right and left upper–arm, and near the wrist on the
right and left forearm. Each sensor was fixed on the body
segment of interest using the Velcro straps, provided by
the sensors’ manufacturer. Being each body segment and
its connection to the respective sensor assumed as rigid, a
coordinate transformation between each sensor SoR and its
relative body segment SoR can be described by a matrix
in the SO(3). In order to estimate these rotation matrices,
that map each sensor SoR to the one of the relative body
segment a calibration protocol, involving both reference and
functional methodologies, was deployed.

For the reference part of the protocol, each subject was
asked to stand up, with arms close to the body and elbows
flexed at 90◦ for about 5 seconds. 3 separate acquisitions

were recorded with subjects in the same posture. The mea-
sured gravity vector has been normalized and averaged over
the 3 trials, in order to estimate vertical axis of reference.
Since magnetic measurements are affected by “soft iron” er-
rors, no reference axis from magnetic vector was considered.

For the functional part of the protocol, a set of mono-
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Fig. 1. Normalized angular velocity vectors: in (a) segmentation of upper
arm movement via k–means clustering algorithm. The algorithm allows to
distinguish between the flexion and extension movement; in (b) the filtering
of noise and outlayers performed by the DBSCAN algorithm is reported,
the brown dots are the filtered angular velocities.

axial movements was defined to determine axes of rotation.
Each movement is composed by two opposite rotations. The
whole sequence of the movements performed by each subject
is reported in the following:

• Thorax
– forward flexion–extension to ∼ 45◦

– lateral ab–adduction
• Upper arm

– arm forward flexion–extension while holding a
light rod at shoulder breadth

– ab–adduction to ∼ 60◦

• Forearm
– flexion–extension while holding a light rod at

shoulder breadth and upper arms close to the body
– prono–supination with elbow flexed at 90◦
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For each movement a total of 3 repetitions (trial) was
performed; the subject was requested to repeat the whole
sequence 3 times. During the movements angular velocities
were continuously recorded and precessed in the following
steps in order to extract a functional axis of rotation. First
of all, data were filtered with a two-way, 4th order, lowpass
Butterworth filter with 10 Hz cut–off frequency, to reduce
higher frequency noise (a preliminary analysis of power
spectral density indicated that signal information is mainly
concentrated in the 0-1 Hz range).
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Fig. 2. Orientation angles, expressed as Euler roll–pitch–yaw, respectively
for the uncalibrated (a) and calibrated (b) movements.

The second step was implemented in order to enable a
clear segmentation of actions (e.g. separate flexion from
extension movement or pronation from supination); a lower
threshold equal to 5% of peak angular velocity was set
to detect the onset and end of each movement. Then, the
resulting data were normalized and segmented by means
of a k–means data clustering algorithm, assuming that only
two clusters have to be found in the dataset (i.e. the pair
of rotations with the same axis and opposite in sign that
compose the movement).

Thorax Children (N = 4) Adults (N = 4)
gravity 1.25± 0.62 0.41± 0.15

flexion–extension 1.89± 0.87 1.37± 0.23
lateral–flexion 6.11± 1.96 2.49± 1.02

Upper am Children (N = 4) Adults (N = 4)
gravity 3.07± 2.03 0.35± 0.06

flexion–extension 4.92± 2.05 1.84± 0.48
ab-adduction 3.96± 0.97 2.46± 0.79

Forearm Children (N = 4) Adults (N = 4)
gravity 9.90± 5.94 0.49± 0.22

flexion–extension 2.52± 0.82 1.53± 0.67
prono–supination 3.37± 2.81 1.07± 0.79

TABLE I
ANGULAR DISPERSION (ε) OF EACH MOVEMENT EXPRESSED AS THE

MEAN VALUE OVER THE TRIALS ± SD.

The whole dataset of normalized angular velocities is
distributed over the surface of an unitary radius sphere
in R3 (see Fig. 1 a). Finally, to further remove outliers
and noise, the pair of identified clusters is mapped on the
same hemisphere (by changing the direction of the vectors
composing one of the two clusters). This allows to apply a
density–based clustering algorithm, namely DBSCAN which
filters out noise and outliers by detecting clusters of arbitrary
shapes based on the definition of density–reachability (see
Fig. 1 b, for further details refers to [21]). The typical output
of the two clustering operations is shown in Fig. 1. The
functional axis was extracted from the processed data as the
averaged, normalized angular velocity vector.

For each estimated axis, a measure of the dispersion (ε)
proposed by [18] was evaluated as:

ε =

∑3
i=1 arccos(~vi · ~vavg)

3
(1)

where ~vavg is the average axis of the whole trial set and ~vi
is the average axis computed on a single trial.

The output of the proposed calibration procedure is a set
of 3 axes for each body segment, one from the reference
and the other from the functional part. In order to estimate
the 3D rotation matrix between the sensor SoR and the
corresponding AF, only a couple of non-aligned axes is
needed. The whole set of estimated axes was ranked by the
dispersion parameter and the couple exhibiting the lowest
ones was selected. For example, being (~a1,~a2) the vector
pair, with ε(~a1) < ε(~a2), the SO(3) matrix relating the sensor
SoR to the corresponding body segment AF can be defined
as:

R = [ ~a1, ( ~a1 × ~a2)× ~a1, ~a1 × ~a2] (2)

III. RESULTS

Proposed methodology was tested on a group of four
healthy TD children (age 7 ± 0.3 years) who participated
in this study. All parents have provided written consent. To
better evaluate method performance in relation to existing
literature, an equal number of adult subjects (age 27 ± 1.9
years) was tested.

The whole protocol was presented to the child as an
imitation task. Therefore, procedure required the presence of
an adult standing in front of the child and requesting the child
to mirror adult movements. Particular care was taken to limit
overall protocol duration to less than 5 minutes, including M-
IMU sensor wearing time and system start-up.

The results of the experimentation are reported in table I.
Dispersion values were on average quite low for adults
and acceptable for children, compared to data in literature
[18]. Particularly, dispersion values in adults and in children
resulted significantly different (p < 0.05), except for the
thorax flexion-extension movement. A two-tailed t–test or
Wilcoxon’s rank–sum test were used as appropriate.

In particular, the choice of a reference position with the
elbow flexed at 90◦ has proved to be unsuitable for children
experiment. In fact, in most cases they tried to continuously
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correct the arm configuration in order to imitate the adult,
rather than keeping a fixed position. Moreover, an unwanted
prono–supination component during the flexion–extension
movement of the forearm and upper arm has been shown
to be more evident in children than adults. This artifact is
probably due to the presence of a light rod used to constraint
the lateral sway.

Despite a rigorous validation of the protocol (using a
stereophotogrammetric system) has not been carried out, a
preliminary indication about the correctness of the estimated
axes was obtained by the analysis of the M-IMUs orientation
measurements; after the calibration matrices are obtained
using the aforementioned methodology, we refer acquired
quaternion data (qGS ), originally expressed in the sensor
SoR, into the corresponding AF (qGAF ). Since functional
movements were selected conforming with the mono–axiality
hypothesis, a quasi–monoaxial movement should be ob-
served from the calibrated data.

Both orientation angles expressed in AF and in the sensor
SoR, expressed as roll–pitch–yaw angles are shown in fig. 2,
for the case of forearm flexion–extension movement. The ori-
entation data appear to confirm the mono–axiality hypothesis
as expected.

IV. CONCLUSIONS

A methodology for the assignment of AFs to the upper
extremity using a magneto–inertial motion tracking sys-
tem on children has been proposed. By choosing the axes
with the lowest dispersion, a 3D rotation matrix can be
estimated and used to relate orientation information from
the sensors to the physiological motion. Moreover, through
a mathematical model of the human body, the described
procedure enables the reconstruction of the upper limb
kinematics in children using M-IMU measurement (e.g. see
the VR environment in Fig. 3.

Finally, critical issues relating to the choice of calibration
movements, which has been proved to be appropriate in
adults but ineffective in children, have been emphasized,
suggesting future improvements of the protocol, to allow its
use in children with typical and atypical development.
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