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Abstract— This paper presents the development of a system
capable of generating safety alarms when unexpected or unfore-
seen situations are detected during larynx phonomicrosurgery.
Such system establishes relations between the application of
laser power and changes in laryngeal tissue characteristics and
appearance. As core component, we propose a model able to
map inputs generated by the surgeon when controlling the laser
to an estimation of tissue temperature. Situations where this
supervision is relevant have been identified.

I. INTRODUCTION

Over the last decades the use of lasers as surgical tools
has gained wide acceptance in a number of medical spe-
cialties. Laser phonomicrosurgery (LP) is one example. It
encompasses a set of minimally invasive surgical procedures
for the excision of lesions of the vocal folds [1]. Lasers play
a significant role in enhancing the quality of phonomicro-
surgery as they allow to perform extremely precise and clean
incisions, thus minimizing damage to healthy tissue around
the lesion that should be preserved in order to save as much
organ functionality as possible [2]. The clinical success of
this kind of procedures is measured according to the specific
type of pathology being treated. Two indicators of the quality
of the surgical outcome are (i) the recovery time the time
needed by the patient to recover after the operation and (ii)
the degree of restored voice functionality.

With respect to traditional surgery, where precision and
quality of incisions depend mainly on the surgeon’s delicate
sense of touch and on the force feedback he gets from the
scalpel, procedures that involve the use of a surgical laser
require a different type of dexterity.

Based on these observations, the EU project µRALP [3]
proposes to redesign the current LP setup. Through research
and development in a range of topics – including human-
machine interface, assistive systems, medical imaging, endo-
scopic tools, micromanipulators – the project aims to advance
the state of the art in this kind of procedures, raising its level
of accessibility, precision and safety. The ultimate goal is the
creation of an advanced surgical robotic platform, allowing
surgeons to perform operations that would not be possible
using the current technology. Such a platform will enhance
the surgeon’s perception of the surgical site and support his
decision-making process by means of an information-rich
interface based on augmented reality.

Within this context, the project entails the creation of a
Cognitive Supervisory System. The goal is to develop an
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intelligent system capable of establishing cognitive relation-
ships between the application of laser power and the modi-
fications that the laryngeal tissue undergoes. The purpose of
this system is to predict the continuous appearance changes
of the surgical site that can be observed during LP, by means
of image processing and artificial intelligence techniques.
This predictive functionality will be used to automatically
supervise the surgical procedure, generating alarms in case
unexpected of unforeseen situations are detected. This kind
of cognitive supervision will improve the safety of proce-
dures, complementing the surgeon’s perception of the state
of the LP. Moreover, it will help in detecting faulty hardware
conditions, such as variations of laser power or changes in
laser focus. This paper describes the technical advances in
the development of such a system.

II. LASER SURGERY SUPERVISION

A top-down approach has been used to define this module.
First, those situations where a supervisory system could be of
interest were identified and then contrasted against available
sensing and processing capabilities. The interaction between
the laser and the tissue is the elemental building block at the
core of laser-based surgery, which is the process by means
of which incisions and dissections are performed. Therefore,
the focus of the supervisory system falls on the undesired
and potentially dangerous situations that may arise during
laser-tissue interaction. In this context, tissue carbonization
(Fig. 1a) and incision quality (Fig. 1b) were recognized as
potential targets to be automatically supervised.

A. Tissue Carbonization

This is the most relevant type of laser-tissue interaction to
be supervised. It is described in the literature as an undesired
effect that has to be limited as much as possible [4], [5].
Carbonization during laser incisions indicates that the tissue
has suffered thermal damage, i.e. it was burned during the
cutting process. This mainly occurs on tissue surrounding the
area of incidence, where the temperature becomes very high.
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It is a non-intentional tissue damage where healthy tissue
that should have been preserved is being compromised. It
causes a longer healing time for the patient, it may leave
scars and make any histopathological analysis of removed
tissue impossible. These arguments have also been stressed
by the surgeons when consulted for those situations that
must be prevented during surgery. Moreover, manufacturers
of commercial equipment for laser surgery, such as Lumenis
Inc. [6], offer open loop minimization of carbonization as
an important feature of their most recent products. Unfor-
tunately, actual avoidance of carbonization still relies on
the experience and skills of the surgeon which intrinsically
establishes how likely carbonization is and thereby decides
the laser actions to perform. Certainly, surgeons do not
solve the very complex differential equations that govern the
dynamics of the phenomena involved during carbonization
(e.g., tissue temperature); instead they use a different set of
input variables, extracted from visual information, allowing
them to interpret the state of the laser-tissue interaction.

B. Incision quality

Another important feature required during laser-based
surgery is the performance of high quality incisions. Quality
of incision encompasses accuracy for both, depth and length
of the cut executed by the surgeon. Such accuracy depends
on the capabilities of the laser system to provide the adequate
amount of energy and, at the same time, on the ability of the
surgeon to control the exposure time of such energy.

C. Autonomous Supervision

It is well known that the phenomena described in the
previous sections depend on the variation of temperature
of the tissue, as well as its water content, during laser
exposure. On the other hand, these variables depend on
properties of the surgical laser including beam size, power,
pulse duration and exposure time. The laser wavelength
and its corresponding absorption and scattering coefficients
on the tissue also determine the dynamics of carbonization
and the incision quality. The inability to measure tissue
temperature during surgery is the first constrain to overcome.
Therefore we start developing a model of tissue temperature
dynamics during laser interaction. The change in temperature
due to heat transfer and transport are modeled as functions
of laser exposure time; such model is parameterized with
respect to laser power and assumes constant tissue properties.
This model was extracted, by means of machine learning
techniques, from data generated using Monte Carlo-based
simulation of laser propagation inside the tissue plus a finite
difference method of heat transportation. Such learned model
is essential in order to predict carbonization and to control
the incision depth (ablation) during laser surgery.

III. TEMPERATURE DYNAMICS MODEL

Exact solution of the analytical model of temperature dy-
namics is complex [4] and it involves several approximations
and assumptions. Numerical methods are commonly used to
solve the required time dependent equation of temperature.

This section presents a methodology aiming to learn a
model of tissue temperature dynamics during laser-tissue
interaction, such model uses the same inputs as humans
to estimate tissue temperature. This model is not supposed
to replace the surgeon’s perception but to complement it,
performing the same type of cognitive mapping that the
human is doing to estimate the state of the tissue given
known inputs.

A. Model Definition

Let us define T as the set of temperature values Tn of the
N discrete volume elements that compose the tissue, that is

T =
⋃

n∈{1,...,N}

Tn, (1)

where n denotes a single elemental volume lying at a
given radius (r), and depth (z). Temperature dynamics is
independent of the angular dimension [4], hence it has been
dropped. Let us define T ∈ RI×J as the temperature matrix
that completely describes T . The goal of this approach is
to find a discrete model able to describe the evolution of
temperature across the tissue volume over time, i.e. the
temperature dynamics of tissue, which is expressed as

Tk+1 = f(Tk,uk), (2)

where Tk is the temperature at time k and u is a vector
representing the independent variables affecting the state of
the system. The output of the model is the estimated variable,
i.e., the temperature in the next sample time, (Tk+1). Input
variables for the model must include enough information to
predict the output. For this reason, the state of the variable
being supervised has been included (Tk). Moreover, we can
hypothesize that, given a certain type of tissue and a set of
laser properties, such as laser type and beam size and profile,
changes in temperature are only driven by the laser power
(P ) and length of the pulse duration (τ ), i.e.

uk = [P τ ]T . (3)

Eq. (2) assumes a known and constant sample time (ts)
We hypothesize that a single function can be used to map

the inputs to the prediction of the temperature in any point
(r, z) of the tissue volume. There exists a unique function,
h, such that,

T i,j
k+1 = h(Tk,uk, i, j)� (4)

The function proposed in Eq. (4) is clearly nonlinear, as
the influence of u is not proportional with respect to the
location of volume elements. The assumptions presented in
the previous section, together with the required approxima-
tion for the initial temperature T0, restrict the use of the
model only to similar types of laser and tissues as well
as similar environmental conditions. Moreover, this model
does not take into account laser motion, as it assumes the
point of application of the laser on tissue to stay fixed
during the exposure. Despite more complex models may be
envisioned, this model will allow to validate the proposed
methodology and will constitute the basis to achieve more
ambitious objectives.
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Fig. 2: Section view of temperature distribution across the
tissue geometry after simulated laser-tissue interaction. Tis-
sue has been exposed for 4 seconds to a CO2 laser beam,
0.025mm large. A power of 1W and with a pulse time of
0.2s have been used.

B. Learning temperature nonlinear dynamics

A supervised learning algorithm, known as Locally
Weighted Projection Regression (LWPR) [7], [8], is used
to approximate the function hypothesized in Eq. (4). The
method requires the availability of a set of training exam-
ples, i.e. a set of samples of the input and output vari-
ables

{
Tl

k+1, [T,u]
l
k

}m

l=1
. LWPR was selected as learning

method as it is considered the state of the art in statistical
nonlinear regression. It permits to learn nonlinear functions
from large a amount of training examples, characterized by
a high dimensionality of the input space. Moreover, being an
incremental method, it can be fed with new training data at
any time, allowing to craft models able to adapt to changing
circumstances [7].

C. Simulated laser-tissue interaction

A computational simulation of temperature dynamics dur-
ing laser-tissue interaction was developed, as proposed in [9],
[10], to the aim of collecting the training examples needed.
The optimal approach to acquire such training examples
would be to capture data from actual laser-tissue interaction
experiments. Experiments of this kind have already been
proposed in other works, such as [11], for different research
objectives. As a validation mechanism of our concepts, this
paper presents a temperature model learned using simulated
data. However, validation with respect to data collected in a
real laser-tissue interaction is also presented.

The simulation combines a Monte Carlo method, to model
energy absorption, with a finite difference method which
models heat diffusion within the tissue medium. Fig. 2
reports an example of temperature distribution obtained
through the implemented simulation. Temperature increases
the most at the center of the tissue surface, where the
laser beam has been applied. Heat exchange phenomena
dominated the temperature dynamics in the rest of the tissue,
leading to smaller increments.

IV. COGNITIVE SYSTEM FOR SURGERY SUPERVISION

Based on the model proposed in Eq.(4), an autonomous
system to avoid tissue carbonization and to supervise the
quality of the incision can be implemented . The endoscopy
surgical setup proposed in the µRALP project [3] includes
the use of high-resolution cameras that will provide visual
perception to the surgeons. Image processing techniques has
been already implemented [12] in order to trace the location
of the (usually read) beam of the laser. Giving such location,
the proposed model can be distributed over the area of
interest, activating the input when the surgeon triggers the
laser, generating and tracking the estimate tissue temperature.
Beyond estimating the temperature, the energy transferred to
the tissue after reaching vaporization point (≈ 100◦C) can
also be estimated and tracked, allowing the control of the
incision quality (depth and length).

V. ANALYZING MODEL RESPONSE

A total of 200 laser interactions were simulated for the
generation of the training data set. Each simulation has
a randomly selected duration of laser exposure and equal
amount of time for temperature evolution without the pres-
ence of the laser (P=0W), i.e. the process of cooling down
was also simulated. The training data was generated using
diverse pulse rate given a fixed power (P=2W), i.e. diverse
effective values of fluence rate. Four types of pulse rates
were considered (Continuous Wave, τ = 0.1s, 0.2s, 0.5s), 50
experiments were simulated for each pulse rate. The learning
process uses a total of 627120 samples and the obtained
model presents a normalized mean square error (nMSE)
of 3.7% against the learning data set. The validation data
set, with 176880 samples, presents a nMSE of 4.3%. These
results demonstrate that given a temperature of a volume
element together with the temperature of its surroundings
and the fluence rate being transferred from the laser, the
learned model is able to estimate the temperature for such
volume in the next time step.

Besides verifying standard learning and validation errors,
further tests and analysis are necessary in order to verify
the quality of the model. The consistence of the model as
a dynamical system must be tested, recursively using its
prediction as input for the next estimation. Convergence
of the predicted temperature with respect to laser-tissue
simulations is expected. Fig. 4 presents a comparison of the
temporal response of the learned system with respect to the
reference dynamics. For the case of continuous laser mode,
the learned model accumulates a nMSE = 4.2%, while for
the case of pulsed laser mode the nMSE = 3.74%.

VI. EXPERIMENTAL RESULTS

The presented results are part of the development of a
system intended to operate during real laser ablation, to
support and complement the perception of the surgeon. As a
step in this direction, data from real laser-tissue interaction
must be collected, allowing an assessment of the strengths
and of the weaknesses of the model. So far, it has been
demonstrated that the learned model acts similarly to the
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Fig. 3: Experimental setup

Fig. 4: Temperature dynamics at the center of the tissue at the
surface (T1,1), and at z = 0.025mm, (T1,2) for pulsed laser
mode. Time response of the reference (blue) and learned
(red) models are shown.

Monte Carlo simulation. However, the quality of such sim-
ulation has not been discussed yet. This sections presents
the initial results towards the validation of the applicability
of the model and the required improvements. An experiment
has been performed, applying a 10.6µm laser beam generated
by a CO2 surgical device onto samples of chicken tissue. The
time required to ablate the tissue (Tissue Ablation Time) has
been measured. This time corresponds to the time required
to raise the temperature of the point of application of the
laser to 100◦, plus the time required to vaporize it (Ablation
by vaporization). Fig. 3 shows the experimental setup.

Results presented in Table I were obtained executing 5
experiments for each pulse mode. The reported TAT corre-
sponds to the mean of the measured event. It can be seen
that, as presented in the results section, the dynamics of the
temperature for the continuous pulse mode (CW) is much
more faster than the one obtained with the τ = 0.1s mode.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a cognitive model for carbonization
prediction during laser-tissue interaction. The model is based
on the measurable variables within a surgery setup: high
level information extracted from video processing as well
as the history of laser actions. The proposed model is
based on inputs similar to those used by the surgeon during
the operation and not on the exact measurement of tissue
temperature and laser dynamics. This model may help during
surgery to complement the perception of the practitioners on
the state of the interaction, enhancing the human decision
making process aiming to avoid carbonization. Moreover, it

TABLE I: Tissue Ablation Time

Pulse Mode TAT
CW 343ms
0.1 433ms

may be used to automatically adjust the laser properties to
obtain better results in specific stages of the surgery.
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