
  

 

Abstract— This paper investigates the use of linear dynamic 

models (LDMs) to improve classification of single-trial EEG 

signals. Existing dynamic classification of EEG uses discrete-

state hidden Markov models (HMMs) based on piecewise-

stationary assumption, which is inadequate for modeling the 

highly non-stationary dynamics underlying EEG. The 

continuous hidden states of LDMs could better describe this 

continuously changing characteristic of EEG, and thus improve 

the classification performance. We consider two examples of 

LDM: a simple local level model (LLM) and a time-varying 

autoregressive (TVAR) state-space model. AR parameters and 

band power are used as features. Parameter estimation of the 

LDMs is performed by using expectation-maximization (EM) 

algorithm. We also investigate different covariance modeling of 

Gaussian noises in LDMs for EEG classification. The 

experimental results on two-class motor-imagery classification 

show that both types of LDMs outperform the HMM baseline, 

with the best relative accuracy improvement of 14.8% by LLM 

with full covariance for Gaussian noises. It may due to that 

LDMs offer more flexibility in fitting the underlying dynamics 

of EEG. 

 
Index Terms- Linear dynamic model (LDM), hidden Markov 

model (HMM), brain computer interface (BCI). 

 

I. INTRODUCTION 

Electroencephalogram (EEG) signal contains useful 
information which can be translated into commands in brain 
computer interface (BCI) system. BCI systems improve 
communication among individuals with motor disabilities. 
The BCI system performance in term of classification rate 
and computation effect depends on the features and the 
classification technique chosen. Various classification 
methods have been used in BCI research. Conventional 
methods used are static classifiers such as linear discriminant 
analysis (LDA), k-nearest-neighbor (kNN) and linear support 
vector machine (SVM) [1]. However, these classifiers are 
inadequate to capture the temporal information of EEG [2]. 
Alternative classifiers are dynamic classifiers that can model 
the temporal changes and classify sequential pattern [3]. 

The input features for EEG-based BCI are usually varying 
with time, such as spectral changes of event-related 
(de)synchronization (ERD/ERS) during motor-imagery. This 
time course of EEG can provide additional information for 
classification. To better model the temporal structure of EEG  
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dynamic classifiers are used. Existing dynamic classification 
studies use hidden Markov models (HMMs) with discrete 
Markov states [4]-[5], assuming piecewise-stationary of the 
underlying dynamics. HMM classifier is shown to 
outperform static classifier like Fisher’s linear discriminant 
[4]. However, this is inappropriate for the continuous and 
highly non-stationary dynamic underlying EEG.  

Linear dynamic model (LDM), a variant of HMMs can 
better the underlying transient dynamic by allowing the 
hidden states to be continuous. LDMs formulated in state-
space form have been used for time-series of continuous 
motion trajectory and result in better performance than the 
conventional HMM [7]-[8]. LDMs have been proposed for 
speech recognition by [6], [9]-[12]. Use of hidden dynamic 
state  leads to modest accuracy improvement [12]. [5] 
introduced LDMs for EEG classification using raw signals 
and shows that use of a simple local level model (LLM) 
along with PCA transform preprocessing, improve over the 
HMM. However, using raw signals as input might be too 
chaotic as representation for modeling. Besides, [5] lacks 
evaluation on standard dataset using standard features such as 
autoregressive (AR) parameters. 

This paper extends the study [5] by proposing different 
variants of LDMs for improved modelling of the continuous 
dynamic of EEG, to enhance the classification performance. 
We consider two examples of LDM: the LLM in which a 
simple trend model is used in the observation equation and its 
extension by allowing the observation to follow a time-
varying autoregressive (TVAR) process. The hidden states of 
trend and TVAR coefficients are modeled as Markov process 
in state equation. These hidden states of LDM in state-space 
form are estimated sequentially using Kalman filter (KF). 
The parameter estimation is performed based on maximum-
likelihood (ML) criterion using expectation-maximization 
(EM) algorithm. Instead of raw signals, short-time AR 
parameters and band-power are used as input features. 

In our earlier work [19], we investigate different 
covariance modeling of noises in LDMs for denoising of 
single-trial event-related potentials (ERPs). The covariance 
of noise in LDMs can be allowed to be of arbitrary structure 
to capture correlation in observation noise and state 
evolution. Here, we study the effect of these varying noise 
covariance structures on classification accuracy. We compare 
the discrete-state HMM and continuous-state LDMs on two-
class motor-imagery EEG classification task using dataset 
IIIa from BCI Competition III. 

II. LINEAR DYNAMICAL MODELING OF EEG 

A. Local Level Model 

We denote by 1[ ,..., ,..., ]T
n n nd nDy y yy the D-dimensional 

vector of features estimated from n-th short window of a 

single-trial EEG signal. The observation process { }ny is 
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modeled as local level model consisted of observation and 
state equations respectively as  

 n n n y x v   (1) 

    1n n n
 x x w  (2) 

 

ny is assumed to be generated from a trend model (1) with 

additive Gaussian noise, where nx is a hidden slowly varying 

trend component observed in a 1D   identically 

independent distributed (i.i.d) zero-mean Gaussian noise 

with covariance matrix R,
 

~ ( , )n Nv 0 R . The hidden state 

nx is assumed to follow first order Gauss-Markov process as 

in (3) where nw is i.i.d. zero-mean Gaussian state noise and 

covariance matrix Q, ( , )~n Nw 0 Q . The D D Q and R 

are assumed constant with time. Simple model for Q and R 

can assume diagonal matrix with identical entries 
2

wQ I  

and 
2

vR I , which however, are inappropriate to capture 

the correlations typically exist in real-world process like 

EEG. Different choices of covariance have been investigated 

for state-space modeling of speech [6] and ERPs [19]. Q and 

R can be allowed to be of arbitrary form to improve 

modeling and hence classification performance. R and Q can 

be set full matrix to model respectively the correlation 

between features and evolutions of states, as our previous 

work [19]. Besides, the diagonals can be non-identical to 

allow different magnitude of variance. We denote 

( , )θ R Q  the model parameters of a fully specified LLM. 

B. TVAR State-space Model 

We extend the simple LLM by assuming the observation 
model (1) as a TVAR process with the evolution of the 
unknown TVAR coefficients modeled as a random-walk in 
state equation as (2). Assuming that the elements of feature 
vector are mutually uncorrelated, we build a separate 
univariate AR model for each feature dimension as 

  ,

1

p

n n k n k n

k

y a y v



    (3) 

where , 1{ }p

n k ka   are TVAR coefficients at time n, p is the 

model order and 
tv  is a 1-dimensional i.i.d. zero-mean 

Gaussian noise with variance 2

v , 2~ (0, )t vv N  . The process 

is formulated into state-space form as 
 

         n n n ny v C x         (4) 

          
1n n n  x Ax w         (5) 

 

Denoting , 1{ }p

n n k ka x the state vector of TVAR 

coefficients, the process (3) is written in a compact form of 

(4) with a linear mapping of 1 2[ , ,..., ]n t t t py y y  C .The 

evolution of 
nx is assumed to follow another multivariate 

AR(1) process with a constant p p coefficient matrix A . 

The D-dimensional feature observation is modeled by a 

composite of these individual TVAR state-space models 

(SSMs) for each dimension respectively. 
2
,( , )v d dd θ Q denotes parameters of the TVAR model for 

dimension d. The aim of inference is to estimate the 

unknown state vectors and model parameter θ . 

III. PARAMETER INFERENCE & EEG CLASSIFICATION 

A. State Estimation by KF 

The state estimation involve estimating sequentially the 

filtering density of nx , 1:( | )n npθ x y
 

given on observation 

sequence 1: 1{ ,..., }n ny y y and the model θ . For the linear 

Gaussian model considered here, the mean and covariance of 

1:( | )n npθ x y
 
can be obtained analytically by KF [15]. The 

conditional mean 1:( | )n nE x y is the MMSE estimator of nx . 

Alternating between state mean and covariance prediction is 
recursively carried out in KF. The Kalman forward recursion 
is performed to compute the mean and covariance of 

1:( | )n npθ x y for 1 n N  as given in [6], [19]. Future 

observations 1:n Ny
 

available can be used to correct the 

filtered estimates by performing fixed-lag smoothing of nx , 

which computes the smoothing density 1:( | )n Npθ x y . We 

denote by |ˆ n Nx
 

and |n NP  the mean and covariance 

of 1:( | )n Npθ x y . Based on the estimates by the forward 

filtering recursion, the smoothed estimates can be obtained 
by backward recursion for 1, 2,...,1n N N    [5], [19]. 

B. Model Parameter Estimation & Classification 

The ML estimates of model parameters ( , )θ R Q are 

obtained by maximizing the marginal likelihood of 1:Ny  with 

respect to θ   

 
1:

ˆ log ( )arg maxML Np


θ y   (6) 

 

where 1:log ( )Npθ y for linear Gaussian model here can be 

computed analytically using KF as follows 

 

1: 1: 1
1

1

1

log ( ) log ( | )

1
log

2 n n

N

N n n
n

N T
n nn

p p

C










   





θ θ

e e

y y y

P e P e

  (7) 

 

where ne and 
neP are respectively the prediction error and its 

covariance computed from the forward Kalman recursion. 
For the TVAR state-space model, the composite likelihood is 
computed by summing log-likelihoods evaluated on each 
dimension using respective individual models 

 1: ,1: ,

1

log ( ) log ( )
d

D

N d d N

d

p p y



θ θy      (8) 

 

EM method is used for ML estimation when both model 

and state parameters are unknown. EM algorithm was first 

introduced by [16] and has been used for parameter 

estimation in linear Gaussian state-space models in [17] 

[18]. The EM algorithm for our models is described based 

on the procedure in [18], as two-step iteration: 
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1) E-Step: Involve computing the expected log likelihood 

1: 1: 1:[log ( | )]
k N N NQ E p θ x y y  given the model estimates at 

thk iteration kθ . This quantity depends on expectations: 

        | 1:
ˆ ( | )n N n NEx x y          (9) 

     | 1: | | |
ˆ ˆ( | )T T

n N n n N n N n N n NE  S x x y P x x      (10) 

, 1| 1 1: , 1| | 1|
ˆ ˆ( | )T T

n n N n n N n n N n N n NE     S x x y P x x     (11) 
 

The first two quantities are obtained from Kalman smoothing 
estimates while for the last through backward recursion [18]: 

    , 1| | 1 1, | | 1( )T T
n n N n n n n n n N n n n     P P J J P P J  

2) M-Step: The model parameters are updated by 

maximizing the Q function overθ which is done by setting 

the corresponding partial derivative of Q  zero [19]: 
 

1
| 1, | , 1| 1|

2

1
( )

1

N
k

n N n n N n n N n N
nN


  


   

 Q S S S S  (12) 

and 

 1
| |

1

1
ˆ( 2 )

N
k T T

n n n N n n N
nN




  R y y x y S     (13) 

 

Equations (12) and (13) provide estimation of full matrix. 

We investigate a method for estimation for cases 

when R and Q are diagonal entries in [19]. The EM steps 

increase the likelihood monotonically with guaranteed 

convergence to a local maximum. The iteration is stopped 

when 
1 1: 1:( ) ( )

k kN Np p 


 θ θy y
 

where   is a small 

threshold, and the ML estimates of θ is obtained. 

For the training of classifier, a LDM model is estimated 

for each class to be classified, using the EM algorithm. The 

EM algorithm can be easily extended to perform batch 

training on multiple examples. In the E-step, Kalman 

smoother is run through each observation sequence, and then 

the generated expectations (9)-(11) are accumulated over all 

observations. The re-estimation in M-step proceeds as before 

by dividing by the total number of observation frames over 

all examples [6]. Classification requires calculation of 

likelihood of a given model generating the test sample using 

(7) by performing one run of KF. In classification, a test 

EEG signal represented by a sequence of feature vectors 

1:Ny is evaluated over estimated models of each class and 

assigned to the one with the highest likelihood 
 

*
1:

1

arg max log ( )
c N

c C

c p
 

 θ y         (14) 

 

where c C is set of classes to classify. 

IV. EXPERIMENTAL RESULTS 

We evaluate the performance of the proposed LDMs on 

single-trial EEG-based motor imagery classification using 

dataset IIIa, a subset of BCI Competition III dataset [20]. 

The task is four-class classification of cued motor imagery 

EEG (left hand, right hand, foot or tongue movements). The 

database consists of three subjects each recorded 60-channel 

EEG data with sampling frequency 250 Hz, with 60 trials 

TABLE I.  NUMBER OF TRAINING AND TEST TRIALS FOR EACH SUBJECT.  

 

per class. We focus on two-class classification (left and right 
hand movement) using only two unipolar channels i.e. the C3 
and C4. The numbers of training and test trials for each 
subject are shown in Table I. The task is challenging due to 
very few channels along with small amount of training data. 

Segments of single-trial EEGs during motor imagery from 
3s to 8s are used for analysis. For feature extraction, short-
time autoregressive (AR) parameters and band-power (BP) 
estimates are estimated from each short segment of 250ms 
without overlapping. 12-dimensional AR coefficients are 
extracted with 6 parameters from each channel C3 and C4. 
To obtain the BP features, the signals of each channels are 
bandpass-filtered at frequency10-12Hz (alpha band) and 14-
18Hz (beta band), then normalized by mean subtraction and 
squared before averaging over each short-segment to give 4 
BP features each per channel and frequency range. Log-
transform is then applied and the relative BP is calculated 
using reference power over window 3-4.25s. Both set of 
features are concatenated together to form a feature vector of 
16 dimension. 

We compare the performance of the proposed LDMs with 
conventional HMMs in term of classification accuracy. The 
baseline uses discrete HMM with single Gaussian 
observation density, trained using Viterbi training algorithm 
with stopping criterion 0.001 . HMMs with 2 and 3 states 

are used. The likelihood for HMM is calculated based on 
most likely state sequence obtained by Viterbi algorithm. 
LLMs with different covariance models of Q and R are 
trained. The performance of LLMs is sensitive to parameter 
initialization for the model training. We choose the initial 
parameters based on the highest converged likelihood using 
EM algorithm with ε=0.1on the training data. For the TVAR 
SMMs, AR order is varied from 2 to 4. For simplicity, Q 
with identical diagonals is used for state noise of individual 
models. All models are trained on a subject-dependent basis.  

The results for each subject and average over all subjects 
are shown in Table II. The best performing variant of each 
type of models are based on the highest averaged accuracy, 
indicated in bold. It is observed that both the proposed LDMs 
outperform the best HMM baseline, giving relative accuracy 
improvement of 14.8% and 2.8% for the best LLM and 
TVAR model. All the variants of LLMs offer significant 
gains over the baseline, possibly due to improved modeling 
of the underlying dynamics of EEG by the continuous-state 
compared to the discrete one. The performance improvement 
is more significant for subject l1 with very few training data 
available. Among the LLMs, use of more complex models 
with full covariance to capture correlations provide better 
performance with full matrix for both Q and R achieving the 
best. Despite being superior over the baseline, extension by 
describing the observation as autoregression in TVAR model, 
however, perform worse than the LLMs. This may be due to 
the use of independent AR process for each dimension is 
unable to capture the correlation between features as LLMs 

Subject 
# of training trials # of test trials 

Left hand Right hand Left hand Right hand 

k3 36 37 38 38 

k6 21 26 22 16 

l1 20 20 23 19 
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TABLE II.  CLASSIFICATION ACCURACY (%) USING HMMS, LLMS AND 

TVAR SSMS FOR EACH SUBJECT. 

Model k3 k6 l1 Mean 

HMM state-2 52.63 73.58 41.42 55.88 

HMM state-3 52.63 61.08 37.99 50.57 

LLM, Full Q-Full R 57.89 68.18 66.37 64.15 

LLM, Diagonal Q-Diagonal R 55.26 61.65 64.30 60.40 

LLM, Full Q-Diagonal R 56.58 53.98 62.82 57.79 

LLM, Diagonal Q-Full R 56.58 67.90 56.30 60.26 

TVAR order-2 56.58 34.94 50.00 47.17 

TVAR order-3 52.63 56.53 63.15 57.44 

TVAR order-4 50.00 50.00 52.17 50.72 

TABLE III.  LOG-LIKELIHOODS (AVERAGE OVER ALL SUBJECTS) AND AIC 

VALUES FOR DIFFERENT LDMS FITTED TO THE TRANIING DATA. 

Model 
No. of 

Parameters 

Log-

likelihood 
AIC 

HMM state-2 64 -1080.02 2288.04 

HMM state-3 96 -905.28 2002.56 

LLM, Full Q-Full R 512 182.23 659.54 

LLM, Diagonal Q-Diagonal R 32 -214.27 492.54 

LLM, Full Q-Diagonal R 272 -79.86 703.72 

LLM, Diagonal Q-Full R 272 -482.72 1509.44 

TVAR order-2 112 -425.59 865.18 

TVAR order-3 208 -540.85 1497.70 

TVAR order-4 336 -805.01 2282.02 

 
with full covariance do. Future work will extend it by using 
multivariate TVAR model with full covariance modeling as 
the LLMs. From Table III, more complex LDMs (more 
parameters) give better fit to the data than the HMMs, 
indicated by higher likelihoods. Among LDMs, LLMs are 
superior. Generally, use of better representing models leads 
to improved accuracy, e.g. the best fitting LLM, full Q and R 
gives highest performance. Akaike information criterion 
(AIC) suggests LLM, diagonal Q and R the most optimal 
model balanced between simplicity and goodness-of-fit. 

V. CONCLUSION  

In this study, we examine the use of LDMs to improve the 
dynamic classification of single-trial EEG. The continuous 
state of LDMs can better describe the non-stationary 
underlying dynamics of EEG compared to the piece-wise 
stationary discrete-state of conventional HMMs. We propose 
two examples of LDMs: LLMs with covariance modeling of 
noises to capture feature correlations, and TVAR models 
using a autoregressive process for observations. Results on 
two-class motor-imagery EEG classification show that both 
models outperform the discrete-state HMM, with substantial 
improvement of 14.8% by the best variant of LLM. Future 
work will consider extending the single-Gaussian noises of 
the LDMs to non-Gaussian or mixture of Gaussians, and 

LDMs to more general state-space models. Besides, the LD 
modeling of EEG can be extended to multivariate case for 
multiple channels. To obtain more reliable comparison 
results, the evaluation would be extended to more complex 
multiple-class classification task using more subjects. 
Successful modeling and classification using LDMs for EEG 
motivates application to other biomedical signals generally. 

REFERENCES 

[1] A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, "Characterization 

of four-class motor imagery EEG data for the BCI-competition 2005," 

Journal of Neural Engineering, vol. II, no. 4, pp. L14-L22, August 
2005. 

[2] F Lotte, M Congedo, A Lecuyer, F Lamarche, and B Arnaldi, "A 

review of classification algorithms for EEG-based brain–computer 
interfaces," Journal of Neural Engineering, vol. IV, no. 4, pp. R1–

R13, January 2007. 

[3] L. R. Rabiner, "A tutorial on hidden Markov models and selected 
applications in speech recognition," Proceedings of the IEEE, vol. 

LXXVII, no. 2, pp. 257-286, February 1989. 

[4] H. Lee and S. Choi, "PCA-based linear dynamical systems for 
multichannel EEG classification," in Neural Information Processing, 

2002. ICONIP '02. Proceedings of the 9th International Conference 

on, 2002, pp. 745-749. 
[5] H. Lee and S. Choi, "PCA-based linear dynamical systems for 

multichannel EEG classification," in Neural Information Processing, 

2002. ICONIP '02. Proceedings of the 9th International Conference 
on, 2002, pp. 745-749. 

[6] J. Frankel and S. King, "Speech Recognition Using Linear Dynamic 

Models," IEEE Transactions on Audio, Speech, and Language 
Processing, vol. XV, no. 1, pp. 246-256, January 2007. 

[7] V. Pavlovi´cy, B. J. Freyz, and T. S. Huang, "Time-Series 

Classification Using Mixed-State Dynamic Bayesian Networks," in 
IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, 1999. 

[8] V. Pavlovic and J.M. Rehg, "Impact of dynamic model learning on 
classification of human motion," in Proceedings. IEEE Conference on 

Computer Vision and Pattern Recognition, 2000, 2000, pp. 788-795. 

[9] J.Z. Ma and L. Deng, "Target-directed mixture dynamic models for 

spontaneous speech recognition," IEEE Transactions on Speech and 

Audio Processing, vol. XII, no. 1, pp. 47- 58, January 2004. 

[10] J. Ma and L. Deng, "A mixed-level switching dynamic system for 
continuous speech recognition," Computer Speech & Language, vol. 

XVIII, no. 1, pp. 49-65, January 2004. 

[11] A.-V. I. Rosti, Linear Gaussian Models for Speech Recognition, Ph.D. 
Thesis, Eng. Department, Cambridge Univ., Cambridge, U.K., 2004. 

[12] J.Frankel, Linear dynamic models for automatic speech recognition, 
Ph.D. thesis, School of Informatics, Univ. of Edinburgh, U.K., 2003. 

[13] S. Roweis and Z. Ghahramani, "A unifying review of linear gaussian 

models," Neural Comput, vol. XI, no. 2, pp. 305-45, 1999. 
[14] A.V.I. Rosti and Gales M., Generalised linear Gaussian models.: 

Cambridge University Engineering Department, 2001. 

[15] R. Kalman, "A new approach to linear filtering and prediction 
problems," J. Basic Eng., vol. LXXXII, pp. 35–44, March 1960. 

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood 

from incomplete data via EM algorithm," J. R. Statist. Soc. B, vol. 
XXXIX, pp. 1-38, 1977. 

[17] R. H. Shumway and D. S. Stoffer, “An approach to time series 

smoothing and forecasting using the EM algorithm,” Journal of Time 
Series Analysis, vol. 3, no. 4, pp. 253–264, 1982. 

[18] Z. Ghahramani and G. E. Hinton, “Parameter estimation for linear 

dynamical systems,” Technical Report, University of Toronto, 1996. 
[19] C.-M. Ting, S. B. Samdin, S. Salleh, M. H. Omar, and I. 

Kamarulafizam, "An expectation-maximization algorithm based 

Kalman smoother approach for single-trial estimation of event-related 
potentials," in Proc Annu. Int. Conf. IEEE Eng. Med. Bio. Soc, pp. 

6534-6538, 2012. 

[20] B. Blankertz, K. R M¨uller, G. Curio, T. M. Vaughan, G. Schalk, J. R. 
Wolpaw, A. Schl¨ogl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. 

Schr¨oder, and N. Birbaumer, “The BCI competition 2003: Progress 

and perspectives in detection and discrimination of EEG single trials,” 
IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 1044–1051, Jun. 2004. 

4830


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

