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Abstract— The fusion of data from multiple neuroimaging
modalities may improve the temporal and spatial resolution
of non-invasive brain imaging. In this paper, we present a
novel method for the fusion of simultaneously recorded elec-
troencephalograms (EEG) and magnetoencephalograms (MEG)
within the framework of source analysis. This method repre-
sents an extension of a previously published spatio-temporal
inverse solution method to the case of MEG or combined
MEG-EEG signals. Moreover, we use a state-of-the-art realistic
finite element (FE) head model especially calibrated for the
MEG-EEG fusion problem. Using a real data set containing
an epileptic spike, we validate the source analysis results
of the spatio-temporal inverse solution using the results of
the LORETA method and the findings from other structural
and functional modalities. We show that the proposed fusion
method, despite the low signal-to-noise ratio (SNR) of single
spikes, points to the same brain area that was found by the
other modalities. Furthermore, it correctly identifies the same
source as the main generator for the MEG and EEG spikes.

I. INTRODUCTION

Simultaneous recording of the electroencephalogram (EEG)
and the magnetoencephalogram (MEG) offers a good ex-
ample of multimodal imaging of the human brain. If used
independently, each modality produces measurements with
high temporal resolution and relatively low spatial resolution.
In order to improve the spatial resolution, source analysis
may be used to reconstruct the brain activity from surface
measurements. Since EEG and MEG signals offer comple-
mentary information about the same neuronal generators in
the brain, an even better spatial resolution is achieved by
combining the signals from both modalities within a source
analysis framework. Multimodal imaging by MEG-EEG fu-
sion results in a more stable reconstruction of brain sources
and opens the way to a wider application of these imaging
techniques in brain research and clinical neuroscience, and
especially in the pre-surgical evaluation of epilepsy patients.

Source analysis aims at imaging the brain using surface
EEG and MEG measurements and requires the solution of the
MEG-EEG forward and inverse problems. The MEG-EEG
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forward problem consists of the calculation of the electric
potentials, in case of EEG, or the magnetic fields, in case
of MEG, on the head surface resulting from the activity of
a set of current dipoles in the brain with known location,
orientation and strength. The solution requires a model for
the geometries and conductivities of the intervening head
tissues. It has been shown that EEG is affected more by
the conductivity and geometry of the skin and skull in
comparison to MEG, while both of them are affected by
the properties of tissues inside skull (including inner skull
surface and anisotropy) [1]. Thus in order to combine those
two modalities the sensitivity differences should be consid-
ered using a sufficiently elaborate forward model. To this
end we use a 6-compartment anisotropic finite element (FE)
head model in this study.

The MEG-EEG inverse problem consists of estimating the
current density in the brain which generated a given set of
EEG or MEG recordings, or both, for a given head model.
Since the number of measurements is much smaller than
the number of sources, the inverse problem becomes ill-
posed and results in an infinite number of solutions. One
possibility to stabilize a solution is achieved by the LORETA
method [2], which imposes a spatial smoothness constraint
in order to regularize the inverse problem. This kind of
constraint, however, still ignores the time series aspect of
the measurements and the information contained therein.
As a remedy to this problem, a spatio-temporal solution to
the EEG inverse problem was presented in [3], based on
an estimation technique known as spatio-temporal Kalman
filtering (ST-KF). In this study, we propose an extension
of the aforementioned method to the case of simultaneous
MEG-EEG recordings.

II. METHODS

The measurement process can be modeled with the following
equation:

Yk = KsJk + εk (1)

where Y = [YM YE ]
T describes the (NY × 1)-dimensional

measurement vector, where NY is the total number of the
NM MEG and the NE EEG sensors. J denotes the current
density vector with NJ sources, defined on the 3D source
grid discretized from the brain’s gray matter. Each of the
Nv points of the source grid corresponds to the location of
the current density vector jv = [ jx jy jz]

T which leads to
NJ = 3Nv sources. Ks is the (NY ×NJ)-dimensional lead field
matrix (LFM) which results from the solution ot the MEG-

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 4819



EEG forward problem. This matrix is defined as

Ks =

[
SMKM
SEKE

]
where SM = sY MINM and SE = sY E INE denote the LFM-scaling
matrices for MEG and EEG respectively; sY M and sY E are
the MEG and EEG scaling factors which will be estimated
from the data. KM is the (NM × NJ)-dimensional MEG-
LFM while KE is the (NE × NJ)-dimensional EEG-LFM.
ε = [εM εE ]

T describes a (NY ×1)-dimensional white Gaus-
sian measurement noise term. Furthermore, it is assumed
that the measurement noise has zero mean and a diagonal
(NY ×NY )-dimensional covariance matrix

Σε =

[
ΣεM 0

0 ΣεE

]
where ΣεM = σ2

εMINM and ΣεE = σ2
εE INE . A more detailed

description can be found in [3] and [4].

A. LORETA

The LORETA method employs a spatial smoothness con-
straint to penalize spatially non-smooth source configura-
tions. At each time instant k, the estimated current density
is computed using:

Ĵk = argmin
J

(
‖Yk−KsJk‖2 +λ

2 ‖LJk‖2
)

where λ is a regularization parameter, in this paper obtained
by minimizing the the Akaike Bayesian Information Crite-
rion (ABIC) [3], and L is the (NJ×NJ)-dimensional discrete
spatial Laplacian operator, which can be thought of as a
discrete approximation to the second-order spatial derivative.

B. Spatio-temporal Kalman Filter

In order to impose a temporal smoothness constraint, in
addition to the spatial smoothness constraint of LORETA,
a model for the evolution of the current density in space and
time, known as the system equation, is chosen:

Jk = AJk−1 +ηk (2)

where A is the (NJ×NJ)-dimensional state transition matrix
and η represents a (NJ×1)-dimensional system noise term.
Let Ση denote the (NJ ×NJ)-dimensional system noise co-
variance matrix. Equations (1) and (2) represent a linear state
space model, such that the inverse problem is recast into a
state estimation problem. The reconstruction of the states Jk
is then performed using a modified Kalman filter.

Due to the high dimension of the state vector, additional
assumptions need to be made to simplify the computation of
the state estimates. First, we multiply the system equation
with the discrete Laplacian operator L to effect a spatial
decoupling of the states and to obtain an approximately
diagonal system noise covariance matrix:

J̃ = LJ (3)

In the following, we will drop the tilde from our notation
but it should be understood that all equations refer to a

laplacianized state space. Additionally, we assign the same
system noise variance to all grid points:

Ση = σ
2
η IN j

By the spatial whitening operation of equation (3) a practi-
cally intractable high-dimensional state estimation problem
is transformed into a set of low-dimensional local state esti-
mation problems, located at each grid point v. The interaction
between grid points is limited to immediate neighbors. We
simplify the model further by assuming the state transition
matrix to obey

A = a1INJ −b1L

thus assigning the same self-dynamics parameter a1 and the
same neighbor-dynamics parameter b1 to all grid points, and
at each grid point to all three current components. Within the
system equation (2) the time lag both for self- and neighbor
dynamics is limited to 1, and only immediate neighbors are
coupled.

Each temporal iteration step of the ST-KF begins by
computing, for each grid point v, the predicted state estimate:

ĵv,k|k−1 = (a1I3)ĵv,k−1|k−1 +
1
6
(b1I3) ∑

v′∈N (v)
ĵv′,k−1|k−1 (4)

where N (v) denotes the set of grid points which are
immediate neighbors of v. The initial state estimate ĵv,1|1 is
chosen to be zero. The respective state prediction covariance
matrix is given by

pv,k|k−1 = (a1I3)pv,k−1|k−1(a1I3)
T +σ

2
η I3 (5)

Globally, the predicted measurement follows as

Ŷk = K̄sĴk|k−1

where K̄s =KsL
−1, the laplacianized LFM. The measurement

prediction error, also known as innovation, is given by

Rk = Yk− Ŷk

The innovation covariance matrix follows as

ΣR =
Nv

∑
v=1

k̄s(v)pv,k|k−1k̄s(v)T +Σε

Here k̄s(v) represents the contribution of the source at grid
point v to the measurements. Consequently, the local Kalman
gain is given by

gv,k = pk|k−1k̄s(v)Σ−1
R

gv,k can be interpreted as a local inverse of the LFM. Finally,
the corrected state estimate at grid point v is given by

ĵv,k|k = ĵv,k|k−1 +gv,kRk (6)

and its corresponding local state estimation covariance matrix
is given by

pv,k|k =
(
I3−gv,kk̄s(v)

)
pv,k|k−1 (7)

With equations (6) and (7) one loop of the temporal iteration
step of the ST-KF is completed, and the next loop starts again
from equations (4) and (5), replacing k by k+1.
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After all time points have been processed by ST-KF, the
global state estimates need to be transformed back to the
delaplacianized state space, using L−1J and L−1P(LT )−1.

C. Parameter Estimation

The optimal parameters, in the maximum likelihood sense,
are estimated by minimizing the Akaike Information Crite-
rion (AIC) as given by

AIC(a1,b1,sY M,sY E ,σ
2
εM,σ2

εE) =−2
Nk

∑
k=1

(
RT

k Σ
−1
Rk

Rk

+ log | ΣRk |+NY log(2π)
)
+2Npar

where ΣRk is the innovation covariance matrix, Nk is the
number of time points in the data and Npar is the number
of parameters, in this case 6. The LFM scaling factors
sY M,sY E introduced above and the system noise covariance
parameter σ2

η should not be optimized simultaneously since
they represent the same degree of freedom. We find it
more convenient to assign this freedom to the LFM and
to keep σ2

η fixed at 1. We remark that the introduction
of separate parameters for MEG and EEG, instead of just
single parameters for LFM scaling and measurement noise
covariance, represents a major modification of the original
ST-KF algorithm. It is through this modification that MEG-
EEG-fusion becomes possible.

The optimization problem is solved iteratively by alternat-
ing between the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
secant and the Nelder-Mead simplex methods, in order
to avoid local minima. Since application of each method
requires multiple runs of the Kalman filter, the parameter
optimization step is, with respect to computational time
consumption, the most expensive part of the method.

D. Head Model

The head model was constructed using T1w (1.17 ×
1.042 mm3), T2w

(
(1.17mm)3

)
and diffusion weighted

(DW)
(
(1.875mm)3

)
magnetic resonance images (MRI),

acquired with a Gyroscan Intera/Achieva system (3.0 Tesla,
System Release 2.5; Philips, Best, NL). The DW-MRI
was measured according to Stejskal-Tanner spin-echo EPI
sequence with a SENSE parallel imaging scheme in AP
direction (acceleration factor 2). 20 volumes with diffu-
sion sensitivity b = 1000 S/mm2 using diffusion weighted
gradients in 20 directions, equally distributed on a sphere,
were acquired along with a b = 0 S/mm2 volume. Another
b = 0 S/mm2 volume with reversed encoding gradients was
measured to be used in susceptibility correction.

T1w and T2w images were rigidly registered to each other
and used to segment the inner skull, outer skull and skin
using the FSL-BETSURF function [6]. White matter (WM),
gray matter (GM) and cerebro-spinal fluid (CSF) were
segmented using the FSL-FAST algorithm. To distinguish
between skull spongiosa and compacta, the skull estimate
was eroded by one pixel and a threshold-based segmentation
algorithm was used on the T2w image constrained by the
eroded skull.

The DW-MRIs were used to obtain WM and GM
anisotropy. After eddy current correction using FSL, the
images were corrected for susceptibility artifacts using the
two b= 0 images with reversed encoding gradients, using the
FAIR toolbox [5]. Consequently, the DW-MRIs were regis-
tered to the T2w image and the FSL-DTIFIT function was
used to construct diffusion tensors. The conductivity tensors
were estimated from the diffusion tensors as explained in
[1]. Then a 6-compartment geometrically adapted hexahedral
mesh with anisotropic WM and GM was built with SimBio-
VGRID. The LFMs for EEG and MEG were calculated using
the SimBio software with conductivitity values 0.43, 0.007,
0.025, 0.14, 0.33 and 1.79 S/mm for skin, skull compacta,
skull spongiosa, WM, GM and CSF, respectively [7].

III. APPLICATION EXAMPLE: ANALYSIS OF AN
EPILEPTIC SPIKE

The ST-KF method was applied to MEG-EEG data from
a 19 years old female with severe drug-resistant epilepsy
caused by focal cortical dysplasia in the left mesial temporal
region. Epilepsy started at the age of 6 with auras, com-
plex focal seizures and secondary generalized tonic clonic
seizures. The patient had received 15 different anti-epileptic
drugs but never reached seizure freedom. The inter-ictal
EEG recordings showed continuous epileptiform discharges
over the left fronto-temporal region (electrodes FT9, F9
and T9). Ictal EEG recording showed ictal activity in left
frontal region. Positron emission tomography (PET) showed
hypometabolism in the left mesial temporal region. We used
the findings of structural and functional neuroimaging, as
well as results from LORETA, to validate the source analysis
results obtained by ST-KF.

The patient underwent 275-channel whole head MEG
(CTF, VSM MedTech Ltd.) and simultaneous 74-channel
EEG recording in a magnetically shielded room. The data
set included 500 sec., sampled at 1.2 kHz. Experienced
neurophysiologists inspected the MEG-EEG data and marked
the epileptic spikes common to EEG and MEG. In order to
save computational time, the analysis was limited to 64 EEG
and 64 MEG channels. A 4-sec. segment containing, after a
2-sec. pre-spike period, a single FT9 spike, was selected for
source analysis with LORETA and ST-KF. The shape of the
EEG spike appeared more smeared than the shape of the
corresponding MEG spike; the MEG spike reached its peak
20 ms earlier than the EEG spike. This may be explained by
the attenuation and smearing effects of volume conduction
on the EEG signal and by the different sensitivities of EEG
and MEG to tangential and radial source components. The
MEG and EEG channels with the strongest spike amplitude
are depicted in figure 1.

For comparison purposes, we created three data sets
including only the 64 EEG channels, only the 64 MEG
channels and the combined 128 MEG-EEG channels. For
the analysis by ST-KF, we used, for each data set, the 2-
sec. pre-spike period for parameter estimation and performed
optimization until convergence of AIC. Furthermore, we
computed the current density estimates using LORETA. In
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Fig. 1. The left figure shows the MEG and EEG channels with the strongest
spikes, where the red and green lines mark the MEG and EEG spike maxima,
respectively. The right figure summarizes the ST-KF source analysis results
for the EEG, MEG and combined MEG-EEG data sets. The upper row
displays the localization results at time TM , while the lower row shows
results at time TE . The axial slices are displayed with their respective z
coordinates in MRI space, which increases in the upward direction; the
strongest activation is color-coded in yellow.

order to compare the source analysis results, we used the
spike maxima from the MEG at time TM and the EEG at time
TE , respectively (see figure 1). Visualizations were created
with the fieldtrip toolbox [8].

Using the MEG data set, at TM both methods localized the
source in the left lateral temporal lobe. Likewise for the EEG
data set, at TE both methods found a source in a very similar
location. Using the combined MEG-EEG data set, LORETA
and ST-KF correctly assigned the sources at the respective
spike maxima to the same regions as in the MEG and EEG
data sets. Furthermore, further activations in other regions of
the brain were considerably weakened. Figure 1 shows the
localization results at times TM and TE for the EEG, MEG
and combined MEG-EEG data sets using ST-KF.

For ST-KF, AIC values were, for all three data sets,
substantially smaller than the corresponding ABIC values of
LORETA. From this it follows that ST-KF, in the statistical
sense, explains the data better than LORETA. Additionally,
the source waveforms resulting from ST-KF displayed higher
temporal smoothness than the respective waveforms resulting
from LORETA. The explanation for these results comes from
the additional temporal smoothness constraint used by ST-
KF in order to regularize the inverse solution.

IV. CONCLUSION

In this paper we have addressed the problem of fusion of
simultaneously recorded MEG and EEG. We have demon-
strated that state space modeling provides a natural frame-
work for such fusion tasks, since it links the two different
recordings to a common source space, representing the neural
generators. Through the corresponding parameter matrices
of the state space model, both the spatial and the temporal
domain are represented well within the model. We have
shown that detailed individual anatomical knowledge can
be incorporated conveniently into state space modeling by
employing the corresponding LFMs as observation matrices
of the model. LFMs were modeled by a state-of-the-art 6-
compartment anisotropic FE model. Those parameters of the

state space model for which no prior information is available,
can be estimated from the data by minimum-AIC, a well
established statistical criterion.

The main difference to previous methods for estimating
neural sources, like LORETA, is given by the fact that state
space modeling makes explicit use of the temporal ordering
of the data, while LORETA results would be invariant under
temporal permutation. This enables us to use the available
information to much better extent.

Our state space model was based on an assumption of lin-
earity for both system equation and measurement equation.
For the measurement, linearity is a well justified assumption,
while it may be argued that brain dynamics also contain
nonlinear elements. However, it is known from practical
experience that Kalman filtering is very robust with respect
to simplified and misspecified system dynamics.

We have demonstrated the practicality of the proposed
method by analyzing a single inter-ictal epileptic spike. This
example serves as a proof of concept for MEG-EEG fusion
using ST-KF source analysis for a realistic clinical case. ST-
KF successfully assigned the spikes in MEG, in EEG and in
MEG-EEG to the same source location within the brain, and
this localization was concordant with that of other structural
and functional imaging modalities. However, more spikes
need to be analyzed in order to obtain a distribution of results
for the sources generating the epilepsy in this case.

In the future we will analyze inter-ictal spikes from several
patients, and we will investigate the effects of including more
MEG and EEG channels into the analysis. Furthermore we
intend to improve the temporal regularization by using more
detailed dynamical models, employing prior knowledge from
brain physiology, and by adapting the model parameters in
space and time. The validation of clinical data will also
be improved by using post-surgical results and invasively
measured electrophysiological data.

REFERENCES

[1] M. Rullmann, A. Anwander, M. Dannhauer, S.K. Warfield, F.H. Duffy,
C.H. Wolters, EEG source analysis of epileptiform activity using a
1mm anisotropic hexahedra finite element head model, Neuroimage
vol. 44, pp. 399-410, 2001

[2] R.D. Pascual-Marqui, C.M. Michel, D. Lehmann. Low resolution
electromagnetic tomography: a new method for localizing electrical
activity in the brain, International Journal of Psychophysiology vol.
18, pp. 49-65, 1994

[3] A. Galka, O. Yamashita, T. Ozaki, R. Biscay, P. Valdes-Sosa, A
solution to the dynamical inverse problem of EEG generation using
spatiotemporal Kalman filtering, NeuroImage, vol. 23, Issue 2, pp.
435-453, 2004

[4] O. Yamashita, A. Galka, T. Ozaki, R. Biscay, P. Valdes-Sosa , Recur-
sive penalized least squares solution for dynamical inverse problems
of EEG generation, Human Brain Mapping, vol. 21, pp. 221-235, 2004

[5] L. Ruthotto, H. Kugel, J. Olesch, B. Fischer, J. Modersitzki, M. Burger,
C.H. Wolters, Diffeomorphic Susceptibility Artefact Correction of
Diffusion-Weighted Magnetic Resonance Images, Physics in Medicine
and Biology, vol. 57, pp. 5715-5731, 2012

[6] M. Jenkinson, C.F. Beckmann, T.E.J. Behrens, M.W. Woolrich, S.M.
Smith, FSL, NeuroImage, vol. 62-2, pp. 782-790, 2012

[7] SimBio: A generic environment for bio-numerical simulations.
https://www.mrt.uni-jena.de/simbio.

[8] R. Oostenveld, P. Fries, E. Maris, J.M. Schoffelen, FieldTrip: Open
Source Software for Advanced Analysis of MEG, EEG, and Invasive
Electrophysiological Data, Computational Intelligence and Neuro-
science, vol. 2011, Article ID 156869, 9 pages, 2011

4822


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

