
  

  

Abstract— Least mean square (LMS) adaptive filter has 

been used to extract life signals from serious ambient noises and 

interferences in biomedical applications. However, a LMS 

adaptive filter with a fixed step size always suffers from slow 

convergence rate or large signal distortion due to the diversity 

of the application environments. An ideal adaptive filtering 

system should be able to adapt different environments and 

obtain the useful signals with low distortion. Adaptive filter 

with gradient adaptive step size is therefore more desirable in 

order to meet the demands of adaptation and convergence rate, 

which adjusts the step-size parameter automatically by using 

gradient descent technique. In this paper, a novel gradient 

adaptive step size LMS adaptive filter is presented. The 

proposed algorithm utilizes two adaptive filters to estimate 

gradients accurately, thus achieves good adaptation and 

performance. Though it uses two LMS adaptive filters, it has a 

low computational complexity. An active noise cancellation 

(ANC) system with two applications for extracting heartbeat 

and lung sound signals from noises is used to simulate the 

performance of the proposed algorithm.  

I. INTRODUCTION 

Least mean square (LMS) adaptive filter is often used in 
biomedical applications to remove ambient noise or extract 
life signals from serious noises and interferences [1-6]. Good 
adaptation is one of the important features of an adaptive 
filtering system. A medical device with an adaptive filter had 
better be able to adjust its step size on the basis of different 
application environment. Moreover, the step size should be 
large at the early stage of iteration for fast convergence and 
becomes small at the stage of convergence to obtain useful 
signals with small distortion. Due to the diversity of the 
application environments, a LMS adaptive filter with a fixed 
step size always suffers from slow convergence, and large 
steady-state mean-square error (MSE) or large signal 
distortion, when extracting useful signals from noises or 
interferences. Gradient adaptive step size adaptive filter is a 
desirable solution to meet the demands of adaptation and 
convergence rate, which adjusts the step-size parameter 
automatically by using gradient descent technique [7-12]. 
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Benveniste et al firstly proposed gradient adaptive step size 
algorithm for LMS adaptive filter [7]. Without taking into 
account the independence assumptions, the algorithm was 
derived rigorously, resulting in good performance.  
Benveniste’s algorithm actually performs time-varying low 
pass filtering of the noisy instantaneous gradients in the 
update of the step-size [8]. Then Mathews and Xie proposed 
a new gradient adaptive step size algorithm with lower 
computational complexity, which was based on several 
simplifying assumptions [9]. In Mathews’ algorithm, only 
instantaneous gradient is used to estimate the new step size. 
Therefore, its performance is not as good as Benveniste’s 
algorithm. For multiple step size technique, Ang and 
Farhang-Boroujeny simplified Benveniste’s algorithm by 
replacing time-varying filtering of the instantaneous 
gradients with a fixed parameter low pass filter in the step-
size update [11]. The performance of Ang’s algorithm is 
comparable to that of Benveniste’s, while the computational 
complexity of Ang’s algorithm is lower than that of 
Benveniste’s. However, for adaptive filters without multiple 
step size technique, Ang’s algorithm has higher 
computational complexity than Benveniste’s. 

 For gradient adaptive step size adaptive filters, the most 
important factor affecting the system performance is the 
accuracy of the gradient estimation. The more accurate the 
gradient is estimated, the better performance the adaptive 
filtering systems can achieve. The reason why Benveniste’s 
algorithm achieves better adaptation is that the algorithm can 
obtain more accurate gradients. In this paper, a novel 
gradient adaptive step size LMS adaptive filter is proposed. 
The proposed algorithm utilizes two adaptive filters, which 
can estimate the gradients accurately, thus achieves good 
adaptation and performance.  

The paper is organized as follows. LMS algorithm and 
several gradient adaptive step size algorithms are described 
in Section 2. Details of the proposed algorithm are given in 
Section 3. Performance and computational complexity are 
analyzed in Section 4. Section 5 presents the simulation 
results. The conclusion is made in the last section.   

II. LMS AND GRADIENT STEP SIZE LMS ALGORITHM 

The block diagram of an adaptive filter is illustrated in 
Fig. 1 [13]. The filter is a finite impulse response (FIR) filter 
with length N. The vector of tap inputs at time n is denoted 
by X(n), which includes the tap inputs x(n), x(n-1),…, x(n-
N+1). The weight vector at time n is denoted by W(n) which 
includes tap weights w0(n), w1(n),…, wN-1(n). x(n) is the 
reference input, d(n) is the desired response, and y(n) is the 
corresponding estimate of d(n) at the filter output. By 
comparing the desired response and its estimate, an 
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Figure 2. Block diagram of proposed gradient step size algorithm 

 

Figure 1. Block diagram of an adaptive filter 

estimation error can be obtained: 

 
)()()(

)()()(

nXnWnd

nyndne

T−=

−=
 (1) 

where (·)
T
 is the vector transpose operator.  

A. LMS algorithm 

The LMS algorithm is described by the equation [13]:  

 )()()()()1( nXnennWnW µ+=+  (2) 

where µ(n) is the step size of the LMS adaptive filter, which 
controls the convergence rate. For traditional LMS adaptive 
filter, µ(n) is a fixed value. The condition of the algorithm 
achieving convergence is 0 < µ(n) < 1/λmax, where λmax is the 
maximal eigenvalue of the input signal autocorrelation 
matrix.  

B. Gradient adaptive step size LMS algorithms 

Gradient adaptive step size adaptive filter adapts the step 
size sequence using a gradient descent algorithm so as to 
reduce the squared-estimation error at each iteration. The 
update equation for step size µ(n) is given as [7, 9, 11]  
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where ρ is a small positive constant that controls the adaptive 

behavior of step size, )(2 neµ∇  is the gradient of squared 

error at time n, and φ(n)=∂W(n)/∂µ(n-1).  

As for Mathews’ algorithm,  

 ).1()1()( −−= nXnenϕ  (4) 

Mathews’ algorithm uses instantaneous gradients for step 
size adaptation. 

As for Benveniste’s algorithm, 
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where I is an identity matrix. Benveniste’ algorithm in fact 

performs time-varying low pass filtering of the noisy 
instantaneous gradients in the update of the step size. 

As for Ang’s algorithm, 

 )1()1()1()( −−+−= nXnenan ϕϕ  (6) 

where a is a constant smaller than but close to one. Ang’s 
algorithm is a simplified version of Benveniste’s algorithm. 

III. PROPOSED GRADIENT ADAPTIVE STEP SIZE LMS 

ALGORITHM  

The proposed algorithm as shown in Fig. 2 uses two 
LMS adaptive filters. One is a work filter in the solid square; 
the other is a reference filter in the dashed square. The 
outputs of the two adaptive filters are: 
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where the suffixes “w” denote the work filter; and “r” denote 
the reference filter. The updating functions of the weight 
vectors are: 

 )()()()()1( nXnennWnW wwww µ+=+  (9)    

 )()()()()1( nXnennWnW rrrr µ+=+  (10)    

where µw(n)=µr(n)+∆µ, and ∆µ is a value close to zero. The 

weight vectors of the two filters have the same initial value. 

Thus, we can obtain 
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The limit means the gradient of squared error. So we can 

consider µ∆− ))()(( 22 nene rw  as the approximation of the 

gradient denoted as )(
~ 2

neµ∇  when ∆µ is very small.  The 

update equation of the step size for the work filter is 
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Though the work filter and reference filter have the same 
coefficients at the beginning; the difference between the 
parameters of the two filters increases gradually due to the 
small ∆µ. When the difference increases to some extent, it 
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TABLE I.  COMPUTATIONAL COMPLEXITY OF GRADIENT 

ALGORITHMS 

Algorithm Number of MUL/MAC 

Mathews’ 3N 

Benveniste’s 4N 

Ang’s 5N 

Proposed 4N 

 

 

Figure 3. The comparison of Mathews’, Benveniste’s and the 
proposed algorithms in step size behaviors  

becomes difficult to estimate the gradient of squared error. 
So we need to re-initialize the weight vector of the reference 
filter for every interval of length M 
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IV. ANALYSIS OF PERFORMANCE AND COMPUTATIONAL 

COMPLEXITY  

From (7-10) and (13), we can derive the approximation 
of the gradient of the proposed algorithm if ∆µ→0 
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)()()( nenene rw ≈≈  and )()()( nnn rw µµµ ≈≈ . 

The equations above show that the proposed algorithm is 
essentially the integration of Mathews’ and Benveniste’s 
algorithms. If M=1, the gradient of the proposed algorithm is 
almost the same as that of Mathews’ algorithm. If M=∞, the 
proposed algorithm has a similar gradient with Benveniste’s 
algorithm. This means that the proposed algorithm can 
achieve a performance close to Benveniste’s algorithm if the 
value of M is large enough. 

Tab. I summarizes the computational complexities of 
Mathews’, Benveniste’s, Ang’s and the proposed algorithms. 
In the table, MUL and MAC denote multiply operation and 
multiply–accumulate operation respectively. Though the 
proposed algorithm uses two filters, it has the same 
complexity as Benveniste’s algorithm, lower than Ang’s 
algorithm. One thing deserves to be mentioned is that the 
division in the proposed algorithm can be changed into one 
operation of multiplication or shift if ∆µ at time n is known.    

V. SIMULATIONS 

In an active noise cancellation (ANC) system using 
adaptive filtering, the desired response d(n) of the adaptive 
filter is the combination of the biomedical signals ε, and a 
noise derived from the reference input x(n), which is the 
ambient noise, after passing an unknown system. Here we 
consider the unknown system as a five-point FIR filter with 
coefficients [9-10]:  

  { }.1.03.0,5.0,3.0,1.0=oW  (16) 

The input signal x(n) is a pseudorandom, zero-mean, and 
Gaussian process obtained as the output of the all-pole filter 
with transfer function 
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when the input to the filter is zero-mean, white, and pseudo-
Gaussian noise with a variance of 1.  

The parameters used are ρ=0.0004, a=0.95, ∆µ=10
-6

, 
N=5, µ(0)= 10

-3
, and µmax=0.2. Fifty independent runs and 

50,000 samples per run are used in the simulation. All results 
are the averages after 50 runs. 

Here we perform two types of simulations: (1) ANC with 
measurement noise from electrical signal processing system, 
and (2) ANC with biomedical signals such as heartbeat and 
lung sound. 

A. ANC with measurement noise 

The aim of the simulation is to compare the step size 
behaviors of Mathews’, Benveniste’s and the proposed 
algorithms. In the simulation, the desired response signal 
d(n) is obtained by adding the output of the system in (16) 
with zero-mean, 0.005 variance, white, and pseudo-Gaussian 
additive measurement noise .  From the results shown in Fig. 
3, we can learn the relationship between Mathews’, 
Benveniste’s and the proposed algorithms. When M=1, the 
step size of the proposed algorithm is close to that of 
Mathews’ algorithm after tens of iterations. When M=10

3
, 

the proposed algorithm almost has the same step size as 
Benveniste’s algorithm after tens of iterations. The 
simulation results prove the inference in the previous section. 

B. ANC with biomedical signals 

In electronic stethoscopes, heartbeat and lung sound 
signals are extracted from ambient noises to obtain better 
signal quality. We use these two application cases to 
compare the performance of the four algorithms: Mathews’, 
Benveniste’s, Ang’s, and the proposed algorithms when 
M=10

3
. In the two applications, the desired response signals 

d(n) are obtained by adding the output of the system in (16) 
with (1) heartbeat signal and (2) lung sound signal extracted 
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Figure 4. Step sizes for four gradient step size algorithms with (a) 
heartbeat signal, and (b) lung sound signal    

 

Figure 5. Mean squared error comparison between four gradient step 
size algorithms with (a) heartbeat signal, and (b) lung sound signal 

from 3M Littmann stethoscope [14], respectively.  

Fig. 4 shows the mean behavior of the step size of these 
gradient step size algorithms in the two applications. All 
algorithms can increase the values of the step size very 
rapidly from a small initial value, which is an advantage of 
gradient adaptive step size algorithm. In the two biomedical 
application cases, the proposed algorithm has the step sizes 
very close to those of Benveniste’s algorithm. The step sizes 
of both algorithms decrease to smaller values than those of 
Ang’s algorithm in the following iteration process. Mathews’ 
algorithm does not decrease its step size in the following 
iterations, which is unfavorable to extract good biomedical 
signals.  

Fig. 5 shows the MSE comparison between the four 
algorithms in the two biomedical applications. Benveniste’s 
algorithm and the proposed algorithm show almost the same 
performance with smaller MSE, which implies less signal 
distortion. The MSE comparison in Fig. 5 supports the 

adaptive behavior of step size in Fig. 4.   

VI. CONCLUSION 

This paper presents a novel gradient adaptive step size 
algorithm with dual LMS adaptive filters. The algorithm is 
different from the traditional methods using gradient descent 
technique in that the gradient is measured with two LMS 
adaptive filters. However, the proposed algorithm can 
potentially be a new implementation form of Benveniste’s 
algorithm. It almost has the same step size behavior, 
performance and computational complexity as Benveniste’s 
algorithm. Simulation results demonstrate that the proposed 
algorithm achieves good adaptation and performance in 
biomedical applications.    
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