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Abstract— In this paper, an approach for lower-leg pose
recovery from ambulatory sensors is implemented and validated
in a clinical setting. Inertial measurement units are attached to
patients undergoing physiotherapy. The sensor data is combined
with a kinematic model within an extended Kalman filter
framework to perform joint angle estimation. Anthropometric
joint limits and process noise adaptation are employed to
improve the quality of the joint angle estimation. The proposed
approach is tested on 7 patients following total hip or knee
joint replacement surgery. The proposed approach achieves an
average root-mean-square error of 0.12 radians at key poses.

I. INTRODUCTION

The estimation of human posture during movement is an

important research field with numerous applications, such

as rehabilitation, human-machine interaction, physiotherapy

and sports training. During rehabilitation, the physiotherapist

assesses the patient’s current status, then assigns a set of

exercises to improve the patient’s range of motion, strength

and balance. Goniometry, a technique for the measurement

of body joint angles, is commonly employed in the physio-

therapy clinic, but can only be utilized when the patient is

stationary. A system that can determine joint angles while the

patient is in motion would provide the physiotherapist with

relevant information throughout the rehabilitation session.

A system for estimating human joint angles can be re-

alized by employing inertial measurement units (IMUs),

typically consisting of accelerometers and gyroscopes, to

collect movement data from the patient. IMU systems are

a popular choice for joint angle recovery systems as they

are cheap, small and do not require line of sight or have

any other environmental requirements [1]. This makes IMUs

a suitable choice for physiotherapy clinics, where patients

and therapists are frequently moving around in the collection

space. These movements occlude line of sight, making it

difficult to employ technologies such as cameras.

Many existing works take advantage of IMUs to determine

joint angles [2], [3], [4], [5]. A simple approach is to

use accelerometers as inclinometers [2]. However, if the

subject’s acceleration is comparable to gravity, it becomes

difficult to differentiate between the acceleration caused by

the subject’s inertial movements and the acceleration from

gravity, decreasing the accuracy of the inclinometer. Systems

combining accelerometers and gyroscopes within a com-

plementary filter [3] have also been developed. Gyroscopes

provide an accurate measurement of inertial movement, but

imperfect gyroscope calibrations can produce a non-zero
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angular velocity measurement when no motion is actually

occurring. This offset causes drift after integration, resulting

in divergence of the orientation estimate. These errors can

be reduced by employing more powerful filters such as the

Kalman filter [4], which provide a more systematic method

to fuse sensor measurements. The accuracy of the Kalman

filter can be improved with the inclusion of a model of

the articulated kinematic chain [5]. To further reduce drift,

anthropometric joint limits are enforced by a potential field,

and the process noise adjusted on-line [5].

However, the algorithms described above have only been

verified on healthy subjects. Healthy subjects exhibit smooth

and consistent motion, with a high degree of repeatability and

little variance between repetitions. These motion character-

istics may not be the same for rehabilitation patients, due

to increased impairment from injury or surgery. In addition,

rehabilitation patients tend to be older, and may suffer from

degenerative conditions that could introduce tremors. These

factors combine to increase noise, and could lead to increased

difficulties in joint angle estimation.

While clinical testing has been undertaken with other

automated rehabilitation tools, such as rehabilitation robots

[6], [7], [8] and IMU systems for the analysis of gait [9],

[10], specific assessment exercises [11], or fall detection

[12], to the authors’ knowledge, no joint angle recovery

method suitable for arbitrary motion has yet been tested on

rehabilitation patients.

This paper evaluates the performance of a joint esti-

mation algorithm that utilizes strap-on IMU sensors in a

clinical rehabilitation setting. The data collected from the

IMU sensors is processed in a Kalman filter framework to

estimate the joint angles of the patient performing arbitrary

3D movement. The approach is validated using data obtained

during post-surgery rehabilitation for lower body total joint

replacement patients.

II. JOINT ANGLE RECOVERY ALGORITHM

Movement data is collected from the patients via IMUs

attached to the limb undergoing rehabilitation. The data is

combined with a kinematic model in an extended Kalman

filter (EKF) to estimate the patient’s joint angles [5]. The

algorithm allows the patient’s joint angles to be determined

on-line, regardless of the patient’s posture or movement

speed. The EKF was chosen for its mathematical simplicity.

Initial explorations into more general algorithms such as

the unscented Kalman filter or the particle filter yielded no

noticeable improvement in computational accuracy, or were

deemed too computationally expensive for the application.

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 4799



A. Forward kinematics

The human leg is modeled as an articulated chain of rigid

bodies (leg limbs), connected by a sequence of joints (hip,

ankle and knee). The hip is modeled as a set of 3 co-located

revolute joints, resulting in 3 degrees of freedom (DOF) at

the hip joint, while the knee is modeled as a 2 DOF joint.

A reference frame (denoted as the ith frame) is attached to

each DOF (denoted as the i− 1th joint) according to the

Denavit-Hartenberg convention [13].

The forward kinematics of any articulated chain is com-

puted by successively applying frame transformations with

rotational matrices Ri−1,i [14]. Given the angular velocity of

the preceding frame ωi−1

i−1
, and the joint velocity q̇i, generated

by joint i, the angular velocity ωii of the next frame can be

calculated. The angular acceleration αii can be obtained by

differentiating ωii :

ωii = R
T
i−1,iω

i−1

i−1
+RT

i−1,iq̇i (1)

αii = R
T
i−1,iα

i−1

i−1
+RT

i−1,iq̈i + ωi × (RT
i−1,iq̇i) (2)

The linear velocity of the current frame ẋi is obtained

by computing the cross-product of the angular velocity and

displacement vector from the center of the current frame to

the center of the previous frame ri. Differentiation is carried

out again to obtain the linear acceleration ẍi:

ẋi = R
T
i−1,iẋi−1 + ω

i
i × ri (3)

ẍe,i = R
T
i−1,iẍe,i−1 + α

i
i × ri + w

i
i × (wi

i × ri) +R0,ig
(4)

In (4), an extra R0,ig term is added to model gravity and

to rotate it into the local frame.

B. Extended Kalman filter

The EKF [15] is a sensor fusion technique that estimates

the system state from a state evolution and measurement

observation model. The filter first updates the state esti-

mate based on the state evolution model, and then corrects

the estimate based on the measurement variables and the

measurement observation model. The state estimate st and

observation update zt are defined as:

st = f(st−1) + wt (5)

zt = h(st) + vt (6)

Here, the joint angles, velocities and accelerations for each

DOF are used as the state variables, while the accelerations

and angular velocities obtained from the accelerometer and

gyroscope are used as the measurement variables. Kinematic

equations assuming constant acceleration are used as the state

model f(st−1) in Equation 5:

qt = qt−1 + q̇t−1t+ q̈t−1t
2/2 (7)

q̇t = q̇t−1 + q̈t−1t (8)

q̈t = q̈t−1 (9)

The observation model h(st) is defined by Equations 1 and

4, where ẍe,i and ωii correspond to the local accelerometer

and gyroscope measurements [5].

TABLE I

OBSERVED EXERCISE MOTIONS, WITH THEIR INITIAL POSTURE

(POSTURE), ALONG WITH THE NUMBER OF PATIENTS (COUNT) AND

PERCENTAGE OF TIME (TOTAL) SPENT PERFORMING ANY GIVEN

MOTION. ALL VALUES IN [%].

Name [18] Posture Count Total

AR.ST Heel/toe raise Standing 85.7 5.9

BK.SU Bridging Supine 42.9 1.8

HA.ST Side leg lift Standing 57.1 3.8

HA.SU Leg slides to side Supine 57.1 3.9

HE.ST Leg straight back Standing 71.4 3.2

HF.ST Leg straight forward2 Standing 42.9 2.7

HF.SU Leg straight up2 Supine 42.9 2.1

KE.SI Knee straightening Sitting 71.4 10.2

KE.SU Heel raise Supine 100.0 14.3

KF.SI Knee bends Sitting 14.3 0.6

KF.ST Heel lift Standing 85.7 7.3

KF.SU Heel pushes Supine 57.1 5.5

KH.ST Knee lift Standing 71.4 6.8

KH.SU Knee/hip bend Supine 100.0 25.1

LU.ST Lunges2 Standing 28.6 1.9

SQ.ST Squats2 Standing 71.4 4.8

1 Motion not analyzed in this paper.

To perform optimal estimation, the EKF requires accu-

rate process (wt) and measurement (vt) noise models to

account for factors such as unmodeled terms in the state or

observation equations, or sensor noise in the measurement.

These factors depend on a variety of different conditions,

such as movement velocity or ambient temperature, and need

to be adapted during the state recovery process to produce

a more accurate estimation. A symptom of poor modeling

is state estimate divergence. When divergence is observed

from poorly conditioned EKF intermediate matrices, the state

estimate can be reset and the noise covariances is increased,

as a method to automatically tune the noise parameters. A

potential field [16] is also implemented to enforce anthropo-

metric joint limits, to reduce the impact of drift [5].

III. EXPERIMENTS AND RESULTS

The IMU data for 7 lower body total joint replacement

(TJR) in-patients (2 M, 5 F) were collected at the Toronto

Rehabilitation Institute. The patients were tracked from the

first day of admission until discharge, with the average

patient’s treatment lasting 5.7 days. The patients engaged

in rehabilitation every day during the course of their treat-

ment, and data was collected during each weekday session,

for roughly an hour per session. The patients were also

instructed to perform exercises outside of these sessions,

but these unsupervised exercises were not captured. During

the rehabilitation sessions, three SHIMMER [17] IMUs were

attached by Velcro straps to the hip, knee and ankle of the

patient. The patient was asked to verify that the straps were

not uncomfortable or hampered their movement before the

data collection began. The average age of the participants

was 71.9 ± 9 years old. The experiment was approved

by the University of Waterloo Research Ethics Board and

the University Health Network Research Ethics Board, and

signed consent was obtained from all participants.
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The motions performed by the various patients were the

exercises prescribed by the physiotherapist, based on their

assessment of the patient’s progress. TJR rehabilitation tends

to include a regular set of exercises, such as heel raises,

hip and knee bends, knee straightening and knee lifts [18].

However, a patient’s exercise regime may change based on

the nature of their operation and recovery rate, so certain

patients might not perform certain exercises, or may have

additional exercises added. The data examined for this paper

accounts for over 90% of the exercises observed, excluding

bridge and heel raises. These two types of motions were

excluded as they include ankle movement, which cannot be

recovered with the sensor placement used in this dataset (due

to the lack of sensor at the foot). The exercises collected,

along with the percentage of time patients spent performing

each exercise, are shown in Table I. 14 different types of

exercises were analyzed, for a total of 477 minutes of data.

All analysis was performed with MATLAB 7.12. The

EKF functions were implemented with the ReBEL MATLAB

Toolbox [19]. The initial noise covariance profile used to

describe wt and vt was tuned for a single subject by

minimizing the error between the observation data and the

forward kinematic reconstruction from recovered joint angle,

velocity and acceleration. This noise profile was applied to

the remaining 6 participants.

Unlike [5], a motion capture system was not available at

the rehabilitation clinic. Values derived from anthropometric

tables [20] were used for the link lengths for all participants.

This also means that no motion capture ground truth data

was available to verify the accuracy of the state estimates.

Two alternative measures were examined instead to analyze

the accuracy of the algorithm: 1) sensor error, where the

root-mean-square (RMS) error between the collected ac-

celerometer and gyroscope data and the forward kinematic

reconstruction from the state estimate is calculated, 2) key

pose error, where key stationary poses in the movement

are identified, and the joint angle RMS error between the

first key pose and subsequent key poses in the movement

sequence is calculated.

The ground truth data for the sensor error is calculated by

processing the IMU data with a dual-pass Butterworth filter

to reduce high frequency sensor noise. These error results

can be seen in Table II. Table II shows good reconstruc-

tion results. For the accelerometer, the largest contributor

to the acceleration signal is gravity, at 9.81 m/s2. If the

joint recovery is poor, then the acceleration reconstruction

would show errors comparable to that of gravity. The EKF

algorithm achieves accelerometer reconstruction errors less

than 5% of gravity. For the gyroscope, the data can be

compared against a joint recovery system that relies on

only accelerometer incline to obtain joint angle. Inclinometry

systems can only determine tilt and heading, and thus are

not able to estimate movements that involve hip abduction

movement. The proposed system, with a gyroscope RMS

error of 0.09 rad/s, outperforms the inclinometer, with a

gyroscope RMS error of 0.11 rad/s.
The IMU RMS errors reported above do not capture drift

TABLE II

ACCELEROMETER AND GYROSCOPE RMS ERRORS BY MOTION TYPE.

ERROR REPORTED FOR THE UPPER LINK (U), LOWER LINK (L), AND

OVERALL AVERAGE (AV).

Accelerometer [m/s2] Gyroscope [rad/s]

U L AV U L AV

HA.ST 0.40 0.48 0.44 0.14 0.15 0.14

HA.SU 0.46 0.50 0.48 0.09 0.09 0.09

HE.ST 0.41 0.50 0.45 0.11 0.13 0.12

HF.ST 0.49 0.52 0.50 0.13 0.14 0.14

HF.SU 0.33 0.34 0.34 0.04 0.08 0.06

KE.SI 0.43 0.61 0.52 0.06 0.16 0.11

KE.SU 0.34 0.32 0.33 0.03 0.06 0.05

KF.SI 0.26 0.21 0.24 0.03 0.06 0.04

KF.ST 0.41 0.58 0.49 0.12 0.20 0.16

KF.SU 0.35 0.36 0.36 0.05 0.08 0.06

KH.ST 0.52 0.49 0.50 0.13 0.14 0.14

KH.SU 0.43 0.36 0.39 0.07 0.07 0.07

LU.ST 0.20 0.30 0.25 0.05 0.04 0.04

SQ.ST 0.27 0.32 0.29 0.09 0.09 0.09

AV 0.38 0.42 0.40 0.08 0.11 0.09

error. For example, if drift occurs in the transverse plane,

due to abduction-adduction motion, the accelerometer error

would not increase as the biggest contribution to acceleration

is gravity, and gravity does not impact the abduction motion

for sagittal movements. The second assessment tool, based

on key poses, is employed to capture potential drift error.

To evaluate the magnitude of the position error, the cyclic

nature of the rehabilitation movement is utilized, where the

patient returns to an initial pose after each repetition. If drift

error is small, it can be expected that following the end of

each repetition, the joint angle position is approximately the

same. The pose at the start of each repetition is termed the

key pose. An error metric can be generated by designating

the first key pose as the baseline and comparing subsequent

key poses against it. However, if the patient does not return

to their initial joint configuration at the beginning of each

motion, this offset would be incorrectly attributed as error.

To automatically identify key poses in the continuous

time series data, the recovered joint angles are filtered and

differentiated to obtain joint velocity. The joint angle with the

largest velocity is selected to be the significant DOF. At the

key pose, a zero-velocity crossing (ZVC) is observed, where

the velocity is zero, while the velocity prior and subsequent

to the key pose differs in sign, as shown in Fig. 1. This way,

key poses can be identified consistently and automatically.

The first ZVC that is in front of a velocity peak that is

within 70% of the largest velocity value in the entire motion

sequence is selected to be the baseline key pose. Subsequent

ZVC points that precede large peaks are identified; these

points are assumed to be the start of each repetition. Large

peaks are selected to prevent small movements from trigger-

ing the comparison process. Table III reports the key pose

joint angle errors for each motion type.

The errors reported here are comparable to the results

of the algorithm used with healthy participants [5]. For the

healthy subjects, an angular RMS error of 0.13 rad and 0.10

rad was reported, for upper and lower joints respectively.
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TABLE III

JOINT ANGLE RMS ERROR [rad] AT EACH KEY POSE BY MOTION TYPE.

ERROR REPORTED FOR EXTENSION-FLEXION (EF),

ABDUCTION-ADDUCTION (AA), INTERNAL ROTATION (IR), UPPER LINK

(U), LOWER LINK (L) AND OVERALL AVERAGE (AV).

Upper Leg Lower Leg Average

EF IR AA EF IR U L AV

HA.ST 0.10 0.51 0.15 0.05 0.20 0.25 0.13 0.20

HA.SU 0.06 0.06 0.35 0.05 0.06 0.16 0.05 0.12

HE.ST 0.08 0.14 0.07 0.08 0.18 0.10 0.13 0.11

HF.ST 0.08 0.19 0.06 0.07 0.20 0.11 0.13 0.12

HF.SU 0.02 0.07 0.14 0.04 0.04 0.08 0.04 0.06

KE.SI 0.05 0.11 0.17 0.14 0.25 0.11 0.20 0.14

KE.SU 0.05 0.09 0.18 0.05 0.06 0.11 0.06 0.09

KF.SI 0.04 0.16 0.18 0.08 0.20 0.13 0.14 0.13

KF.ST 0.10 0.17 0.08 0.15 0.18 0.12 0.16 0.14

KF.SU 0.04 0.09 0.16 0.05 0.07 0.09 0.06 0.08

KH.ST 0.14 0.22 0.09 0.12 0.33 0.15 0.23 0.18

KH.SU 0.07 0.09 0.17 0.11 0.10 0.11 0.10 0.11

LU.ST 0.10 0.15 0.05 0.10 0.11 0.10 0.11 0.10

SQ.ST 0.08 0.19 0.06 0.09 0.18 0.11 0.14 0.12

AV 0.07 0.16 0.14 0.09 0.15 0.12 0.12 0.12

With the patient population, the proposed algorithm reports

0.12 rad and 0.12 rad for the same joints. An examination

of Table III shows that, similar to the healthy subjects [5],

the error tends to be smaller in the sagittal plane, suggesting

that drift remains a concern for both datasets. These results

demonstrate promise for use in a clinical setting. However, a

direct comparison between this paper and [5] cannot be made

because the errors reported in [5] was made by comparing

the joint angle estimation to motion capture data at every

measurement time step, whereas this paper compares key

poses to the baseline key pose.

IV. CONCLUSIONS AND FUTURE WORK

A system for joint angle recovery from ambulatory sensors

was validated in a clinical setting with joint replacement

patients undergoing physiotherapy. The approach is based

on an EKF framework incorporating kinematic constraints

by modeling the patient limb as a kinematic chain. The

proposed algorithm achieves an accelerometer RMS error

of 0.40 m/s2 and a gyroscope RMS error 0.09 rad/s. An

examination of key poses throughout the exercises showed

an overall angular RMS error of 0.12 rad with respect to

the initial key pose.

For future work, data from additional patients and in-

jury types will be collected. Different types of exercises,

particularly functional exercises such as walking will also

be examined. More sophisticated state models beyond the

constant-acceleration model will also be considered.
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